Working with parameters

Goal

  • Read in parameters for pure substances and mixtures from json files, and

  • create parameters for pure substances and mixtures within Python.

  • For both regular parameters as well as via the homo-segmented group contribution method.

  • Learn how to access information stored in parameter objects.

Parameters and the equation of state

Before we can start to compute physical properties, two steps are needed:

  1. Build a parameter object.

  2. Instatiate the equation of state using the parameter object.

In principle, every implementation of an equation of state can manage parameters differently but typically the workflow is similar for each implementation.

For pcsaft we first generate the parameters object, PcSaftParameters, which we then use to generate the equation of state object using EquationOfState.pcsaft(). The PcSaftParameters object is part of the feos.pcsaft module while EquationOfState is part of the feos.eos module.

[1]:
from feos.pcsaft import *

Read parameters from json file(s)

The easiest way to create the PcSaftParameters object is to read information from one or more json files.

  • To read information from a single file, use PcSaftParameters.from_json

  • To read information from multiple files, use PcSaftParameters.from_multiple_json

From a single file

Pure substance

Querying a substance from a file requires an identifier. This identifier can be one of Name, Cas, Inchi, IupacName, Formula, or Smiles with Name (common english name) being the default. We can change the identifier type usig the identifier_option argument with an IdentifierOption object. Given a list of identifiers and a path to the parameter file, we can conveniently generate our object.

[2]:
# path to parameter file for substances that are non-associating, i.e. defined by three parameters: m, sigma, and epsilon_k.
file_na = '../parameters/pcsaft/gross2001.json'

# a system containing a single substance, "methane", using "Name" as identifier (default)
parameters = PcSaftParameters.from_json(['methane'], pure_path=file_na)
parameters
[2]:

component

molarweight

\(m\)

\(\sigma\)

\(\varepsilon\)

\(\mu\)

\(Q\)

\(\kappa_{AB}\)

\(\varepsilon_{AB}\)

\(N_A\)

\(N_B\)

\(N_C\)

methane

16.043

1

3.7039

150.03

0

0

0

0

0

0

0

[3]:
# a system containing a single substance, "methane", using "Smiles" ("C") as identifier
parameters = PcSaftParameters.from_json(['C'], pure_path=file_na, identifier_option=IdentifierOption.Smiles)
parameters
[3]:

component

molarweight

\(m\)

\(\sigma\)

\(\varepsilon\)

\(\mu\)

\(Q\)

\(\kappa_{AB}\)

\(\varepsilon_{AB}\)

\(N_A\)

\(N_B\)

\(N_C\)

methane

16.043

1

3.7039

150.03

0

0

0

0

0

0

0

Mixtures

Reading parameters for more than one substance from a single file is very straight forward: simply add more identifiers to the list. Note that the order in which which identifiers are provided is important. When computing vector valued properties, the order of the physical properties matches the order of the substances within the parameter object.

[4]:
# a system containing a ternary mixture
parameters = PcSaftParameters.from_json(
    ['methane', 'hexane', 'dodecane'],
    pure_path=file_na
)
parameters
[4]:

component

molarweight

\(m\)

\(\sigma\)

\(\varepsilon\)

\(\mu\)

\(Q\)

\(\kappa_{AB}\)

\(\varepsilon_{AB}\)

\(N_A\)

\(N_B\)

\(N_C\)

methane

16.043

1

3.7039

150.03

0

0

0

0

0

0

0

hexane

86.177

3.0576

3.7983

236.77

0

0

0

0

0

0

0

dodecane

170.338

5.306

3.8959

249.21

0

0

0

0

0

0

0

From multiple files

There may be cases where we have to split our parameter information across different files. For example, the feos repository has parameters stored in different files where each file corresponds to the parameter’s original publication. Constructing the parameter object using multiple different json files is a bit more complicated. We can provide a list tuples, each of which contains the list of substances and the file where parameters are stored.

In the example below, we define a 4 component mixture from three input files:

  • methane is read from a file containing non-associating substance parameters.

  • parameters for 1-butanol and water are read from a file containing associating substances, and

  • acetone parameters are read from a file that contains substances modelled with dipolar interactions.

[6]:
# na = non-associating
# assoc = associating
file_na = '../parameters/pcsaft/gross2001.json'
file_assoc = '../parameters/pcsaft/gross2002.json'
file_dipolar = '../parameters/pcsaft/gross2006.json'

parameters = PcSaftParameters.from_multiple_json(
    [
        (['C'], file_na),
        (['CCCCO', 'O'], file_assoc),
        (['CC(C)=O'], file_dipolar)
    ],
    identifier_option=IdentifierOption.Smiles
)
parameters
[6]:

component

molarweight

\(m\)

\(\sigma\)

\(\varepsilon\)

\(\mu\)

\(Q\)

\(\kappa_{AB}\)

\(\varepsilon_{AB}\)

\(N_A\)

\(N_B\)

\(N_C\)

methane

16.043

1

3.7039

150.03

0

0

0

0

0

0

0

1-butanol

74.123

2.7515

3.6139

259.59

0

0

0.006692

2544.6

1

1

0

water

18.015

1.0656

3.0007

366.51

0

0

0.034868

2500.7

1

1

0

acetone

58.08

2.7447

3.2742

232.99

2.88

0

0

0

0

0

0

With binary interaction parameters

Some mixtures cannot be adequately described with combination rules from pure substance parameters. In PC-SAFT, we can use a binary interaction parameter, k_ij, to enhance the description of mixture behavior. These interaction parameters can be supplied from a json file via the binary_path option.

This parameter is not shown in the default representation of the parameter object. You can access the matrix of k_ij via the getter, PcSaftParameters.k_ij.

[7]:
file_na = '../parameters/pcsaft/gross2001.json'
file_assoc = '../parameters/pcsaft/gross2002.json'
file_binary = '../parameters/pcsaft/gross2002_binary.json'

parameters = PcSaftParameters.from_multiple_json(
    [
        (['CCCC'], file_na),
        (['CCCCO',], file_assoc)
    ],
    binary_path=file_binary,
    identifier_option=IdentifierOption.Smiles
)
parameters
[7]:

component

molarweight

\(m\)

\(\sigma\)

\(\varepsilon\)

\(\mu\)

\(Q\)

\(\kappa_{AB}\)

\(\varepsilon_{AB}\)

\(N_A\)

\(N_B\)

\(N_C\)

butane

58.123

2.3316

3.7086

222.88

0

0

0

0

0

0

0

1-butanol

74.123

2.7515

3.6139

259.59

0

0

0.006692

2544.6

1

1

0

[8]:
parameters.k_ij
[8]:
array([[0.   , 0.015],
       [0.015, 0.   ]])

Building parameters in Python

Building PcSaftParameters in Python is a bit more involved since the PcSaftParameters object is built from multiple intermediate objects. We need

  • the Identifier object that stores information about how a substance can be identified,

  • the PcSaftRecord object that stores our SAFT parameters,

  • and the PureRecord object that bundles identifier and parameters together with the molar weight.

All these objects are imported from the feos.pcsaft module.

[9]:
from feos.pcsaft import Identifier, PcSaftRecord, PureRecord
[10]:
identifier = Identifier(
    cas='106-97-8',
    name='butane',
    iupac_name='butane',
    smiles='CCCC',
    inchi='InChI=1/C4H10/c1-3-4-2/h3-4H2,1-2H3',
    formula='C4H10'
)
identifier
[10]:
Identifier(cas=106-97-8, name=butane, iupac_name=butane, smiles=CCCC, inchi=InChI=1/C4H10/c1-3-4-2/h3-4H2,1-2H3, formula=C4H10)

The PcSaftRecord contains the model parameters for a pure substance. Mandatory parameters are

  • the number of segments, m, which is a dimensionless floating point number,

  • the Lennard-Jones structure parameter (diameter), sigma, in units of Angstrom, and

  • the Lennard-Jones energy parameter, epsilon_k, in units of Kelvin.

Optional parameters are

  • the dipole moment, mu, in units of Debye used to model dipolar substances,

  • the quadrupole moment, q, in units of Debye used to model quadrupolar substances,

  • parameters to model association:

    • kappa_ab, epsilon_k_ab, na, nb

  • and parameters for entropy scaling:

    • viscosity, diffusion, and thermal_conductivity

    • each of which is a list containing coefficients for the respective correlation functions.

[11]:
# parameters for a non-associating, non-polar substance (butane)
psr = PcSaftRecord(m=2.3316, sigma=3.7086, epsilon_k=222.88)
psr
[11]:
PcSaftRecord(m=2.3316, sigma=3.7086, epsilon_k=222.88)

A PureRecord is built from an Identifier, the molar weight (in gram per mole) and a PcSaftRecord. Optionally, but not shown in this example, we can provide an ideal_gas_record depending on the ideal gas model used in the equation of state. We will not discuss this contribution here but address the topic in a different example.

[12]:
butane = PureRecord(identifier, molarweight=58.123, model_record=psr)
butane
[12]:
PureRecord(
        identifier=Identifier(cas=106-97-8, name=butane, iupac_name=butane, smiles=CCCC, inchi=InChI=1/C4H10/c1-3-4-2/h3-4H2,1-2H3, formula=C4H10),
        molarweight=58.123,
        model_record=PcSaftRecord(m=2.3316, sigma=3.7086, epsilon_k=222.88),
)

For a single substance, we can use the PcSaftParameters.new_pure constructor.

[13]:
parameters = PcSaftParameters.new_pure(butane)
parameters
[13]:

component

molarweight

\(m\)

\(\sigma\)

\(\varepsilon\)

\(\mu\)

\(Q\)

\(\kappa_{AB}\)

\(\varepsilon_{AB}\)

\(N_A\)

\(N_B\)

\(N_C\)

butane

58.123

2.3316

3.7086

222.88

0

0

0

0

0

0

0

We can create another PureRecord for a second component. Then, the PcSaftParameters.new_binary constructor let’s us build the parameters. Optionally, we can also directly provide a k_ij value for this system. Here, we build a record for an associating substance.

[14]:
butan_1_ol = PureRecord(
    identifier=Identifier(
        cas='71-36-3',
        name='1-butanol',
        iupac_name='butan-1-ol',
        smiles='CCCCO',
        inchi='InChI=1/C4H10O/c1-2-3-4-5/h5H,2-4H2,1H3',
        formula='C4H10O'
    ),
    molarweight=74.123,
    model_record=PcSaftRecord(
        m=2.7515,
        sigma=3.6139,
        epsilon_k=259.59,
        kappa_ab=0.006692,
        epsilon_k_ab=2544.6
    )
)
[15]:
parameters = PcSaftParameters.new_binary([butane, butan_1_ol], binary_record=0.015)
parameters
[15]:

component

molarweight

\(m\)

\(\sigma\)

\(\varepsilon\)

\(\mu\)

\(Q\)

\(\kappa_{AB}\)

\(\varepsilon_{AB}\)

\(N_A\)

\(N_B\)

\(N_C\)

butane

58.123

2.3316

3.7086

222.88

0

0

0

0

0

0

0

1-butanol

74.123

2.7515

3.6139

259.59

0

0

0.006692

2544.6

0

0

0

[16]:
parameters.k_ij
[16]:
array([[0.   , 0.015],
       [0.015, 0.   ]])

For mixtures with more than two components, we can use the PcSaftParameters.from_records constructor which takes a list of PureRecords and a numpy.ndarray containing the matrix of k_ij values.

[17]:
import numpy as np

k_ij = np.zeros((2, 2))
k_ij[0, 1] = k_ij[1, 0] = 0.015

parameters = PcSaftParameters.from_records(
    [butane, butan_1_ol],
    binary_records=k_ij
)
parameters
[17]:

component

molarweight

\(m\)

\(\sigma\)

\(\varepsilon\)

\(\mu\)

\(Q\)

\(\kappa_{AB}\)

\(\varepsilon_{AB}\)

\(N_A\)

\(N_B\)

\(N_C\)

butane

58.123

2.3316

3.7086

222.88

0

0

0

0

0

0

0

1-butanol

74.123

2.7515

3.6139

259.59

0

0

0.006692

2544.6

0

0

0

[18]:
parameters.k_ij
[18]:
array([[0.   , 0.015],
       [0.015, 0.   ]])

Parameters from homo-segmented group contribution (homo-GC)

An alternative to substance specific parameters are parameters that combine information from functional groups (molecule segments). A simple variant that only uses the number of segments (not how these segments are connected to form the molecule) is the so-called homo-segmented group contribution method (homo-GC).

As with regular SAFT parameters, we can build a PcSaftParameters object from json or from Python - using segment information.

From json files

We need at least two files:

  • pure_path: a file containing the substance identifiers and the segments that form the molecule

  • segments_path: a file that contains the segments (identifier and model parameters)

As before, we can specify our substance identifier using identifier_option and we can provide binary interaction parameters (segment-segment k_ij) via the binary_path argument.

[19]:
pure_path = '../parameters/pcsaft/gc_substances.json'
segments_path = '../parameters/pcsaft/sauer2014_homo.json'

parameters = PcSaftParameters.from_json_segments(
    ['CCCC', 'CCCCO'],
    pure_path,
    segments_path,
    identifier_option=IdentifierOption.Smiles
)
parameters
[19]:

component

molarweight

\(m\)

\(\sigma\)

\(\varepsilon\)

\(\mu\)

\(Q\)

\(\kappa_{AB}\)

\(\varepsilon_{AB}\)

\(N_A\)

\(N_B\)

\(N_C\)

butane

58.122159999999994

2.1360799999999998

3.7945688260994523

233.79002902513017

0

0

0

0

0

0

0

1-butanol

74.12158

2.3821600000000003

3.7568140627964164

278.79916705846796

0

0

0.006825

2517

1

1

0

From Python

Building parameters in Python follows a similar approach as for regular parameters. To build PcSaftParameters from segments, we need to specify:

  • The ChemicalRecord which contains the Identifier and the segments (as list of strs),

  • and the SegmentRecord which specifies the identifier of the segment (has to be the same as in the list of the ChemicalRecord), the molar weight and the PcSaftRecord for the segment.

If both are available, we can use the PcSaftParameters.from_segments constructor to build the parameters.

[20]:
from feos.pcsaft import ChemicalRecord, SegmentRecord

cr1 = ChemicalRecord(
    identifier=Identifier(
    cas='106-97-8',
    name='butane',
    iupac_name='butane',
    smiles='CCCC',
    inchi='InChI=1/C4H10/c1-3-4-2/h3-4H2,1-2H3',
    formula='C4H10'
),
    segments=['CH3', 'CH2', 'CH2', 'CH3']
)

cr2 = ChemicalRecord(
    identifier=Identifier(
        cas='71-36-3',
        name='1-butanol',
        iupac_name='butan-1-ol',
        smiles='CCCCO',
        inchi='InChI=1/C4H10O/c1-2-3-4-5/h5H,2-4H2,1H3',
        formula='C4H10O'
    ),
    segments=['CH3', 'CH2', 'CH2', 'CH2', 'OH']
)

Each segment has a PcSaftRecord which can be constructed just like we did before for a substance.

[21]:
ch3 = SegmentRecord(
    'CH3',
    molarweight=15.0345,
    model_record=PcSaftRecord(m=0.61198, sigma=3.7202, epsilon_k=229.90)
)
ch2 = SegmentRecord(
    'CH2',
    molarweight=14.02658,
    model_record=PcSaftRecord(m=0.45606, sigma=3.8900, epsilon_k=239.01)
)
oh = SegmentRecord(
    'OH',
    molarweight=17.00734,
    model_record=PcSaftRecord(
        m=0.40200,
        sigma=3.2859,
        epsilon_k=488.66,
        epsilon_k_ab=2517.0,
        kappa_ab=0.006825
    )
)
[22]:
parameters = PcSaftParameters.from_segments(
    chemical_records=[cr1, cr2],
    segment_records=[ch3, ch2, oh]
)
parameters
[22]:

component

molarweight

\(m\)

\(\sigma\)

\(\varepsilon\)

\(\mu\)

\(Q\)

\(\kappa_{AB}\)

\(\varepsilon_{AB}\)

\(N_A\)

\(N_B\)

\(N_C\)

butane

58.122159999999994

2.1360799999999998

3.7945688260994523

233.79002902513017

0

0

0

0

0

0

0

1-butanol

74.12158

2.3821600000000003

3.7568140627964164

278.79916705846796

0

0

0.006825

2517

0

0

0

Accessing information from parameter objects

Once the PcSaftParameter object is constructed, within a jupyter notebook, we get a nice representation in form of a markdown table. Sometimes, however you might want to access information not presented in this table or you might want to store information in a variable.

Let’s build parameters for the four-component mixture we looked at earlier:

[24]:
file_na = '../parameters/pcsaft/gross2001.json'
file_assoc = '../parameters/pcsaft/gross2002.json'
file_dipolar = '../parameters/pcsaft/gross2006.json'

parameters = PcSaftParameters.from_multiple_json(
    [
        (['C'], file_na),
        (['CCCCO', 'O'], file_assoc),
        (['CC(C)=O'], file_dipolar)
    ],
    identifier_option=IdentifierOption.Smiles
)
parameters
[24]:

component

molarweight

\(m\)

\(\sigma\)

\(\varepsilon\)

\(\mu\)

\(Q\)

\(\kappa_{AB}\)

\(\varepsilon_{AB}\)

\(N_A\)

\(N_B\)

\(N_C\)

methane

16.043

1

3.7039

150.03

0

0

0

0

0

0

0

1-butanol

74.123

2.7515

3.6139

259.59

0

0

0.006692

2544.6

1

1

0

water

18.015

1.0656

3.0007

366.51

0

0

0.034868

2500.7

1

1

0

acetone

58.08

2.7447

3.2742

232.99

2.88

0

0

0

0

0

0

As we’ve seen before, we can directly access the binary interaction parameter, k_ij, which is zero here for all binary interactions (we did not provide a file).

[25]:
parameters.k_ij

Get PureRecords via parameters.pure_records

We have seen above that it is possible to generate parameters in Python using intermediate objects, such as Identifier, PcSaftRecord and PureRecord. You can generate these objects for all substances via the pure_records method (getter). This getter returns PureRecord objects which can be further deconstructed to yield the Identifier and PcSaftRecord objects and the molar weight.

Note that the order in which substances are returned matches the order in which we specified the substances above.

[26]:
parameters.pure_records
[26]:
[PureRecord(
        identifier=Identifier(cas=74-82-8, name=methane, iupac_name=methane, smiles=C, inchi=InChI=1/CH4/h1H4, formula=CH4),
        molarweight=16.043,
        model_record=PcSaftRecord(m=1, sigma=3.7039, epsilon_k=150.03, association_record=AssociationRecord(kappa_ab=0, epsilon_k_ab=0)),
 ),
 PureRecord(
        identifier=Identifier(cas=71-36-3, name=1-butanol, iupac_name=butan-1-ol, smiles=CCCCO, inchi=InChI=1/C4H10O/c1-2-3-4-5/h5H,2-4H2,1H3, formula=C4H10O),
        molarweight=74.123,
        model_record=PcSaftRecord(m=2.7515, sigma=3.6139, epsilon_k=259.59, association_record=AssociationRecord(kappa_ab=0.006692, epsilon_k_ab=2544.6, na=1, nb=1)),
 ),
 PureRecord(
        identifier=Identifier(cas=7732-18-5, name=water, iupac_name=oxidane, smiles=O, inchi=InChI=1/H2O/h1H2, formula=H2O),
        molarweight=18.015,
        model_record=PcSaftRecord(m=1.0656, sigma=3.0007, epsilon_k=366.51, association_record=AssociationRecord(kappa_ab=0.034868, epsilon_k_ab=2500.7, na=1, nb=1)),
 ),
 PureRecord(
        identifier=Identifier(cas=67-64-1, name=acetone, iupac_name=propan-2-one, smiles=CC(C)=O, inchi=InChI=1/C3H6O/c1-3(2)4/h1-2H3, formula=C3H6O),
        molarweight=58.08,
        model_record=PcSaftRecord(m=2.7447, sigma=3.2742, epsilon_k=232.99, mu=2.88, association_record=AssociationRecord(kappa_ab=0, epsilon_k_ab=0)),
 )]
[27]:
for pure_record in parameters.pure_records:
    print(f"σ ({pure_record.identifier.name})\t = {pure_record.model_record.sigma} A")
σ (methane)      = 3.7039 A
σ (1-butanol)    = 3.6139 A
σ (water)        = 3.0007 A
σ (acetone)      = 3.2742 A
[28]:
# get identifier of substance 0
parameters.pure_records[0].identifier
[28]:
Identifier(cas=74-82-8, name=methane, iupac_name=methane, smiles=C, inchi=InChI=1/CH4/h1H4, formula=CH4)
[29]:
# get molarweight of substance 0
parameters.pure_records[0].molarweight
[29]:
16.043

A PureRecord object can be used to generate a json string which then can conveniently be stored in a file.

[30]:
# generate a json string from identifier of substance 0
parameters.pure_records[0].to_json_str()
[30]:
'{"identifier":{"cas":"74-82-8","name":"methane","iupac_name":"methane","smiles":"C","inchi":"InChI=1/CH4/h1H4","formula":"CH4"},"molarweight":16.043,"model_record":{"m":1.0,"sigma":3.7039,"epsilon_k":150.03}}'

Summary

In \(\text{FeO}_\text{s}\), handling of parameters is not predefined within the underlying library. Each implementation of an equation of state has complete autonomy about the way parameters are handled. Howevery, we offer some convenient ways to automatize parameter handling which result in the methods presented in this example.

We looked at different ways to get parameters for the EquationOfState.pcsaft() equation of state, i.e.

  • how to read parameters for substances from one or more files where we use the json format to store information, and

  • how to generate parameters the same parameters in Python.

  • In a similar fashion, we showed how parameters can be assembled using a homo-GC method.

Once parameters are created, we can retrieve information by extracting the intermediate objects such as PureRecord, Identifier and PcSaftRecord.

Further reading

Concluding remkars

Hopefully you found this example helpful. If you have comments, critique or feedback, please let us know and consider opening an issue on github.

[31]:
from feos.ideal_gas import JobackParameters