Hard spheres¶
\(\text{FeO}_\text{s}\) provides an implementation of the Boublík-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state (Boublík, 1970, Mansoori et al., 1971) for hard-sphere mixtures which is often used as reference contribution in SAFT equations of state. The implementation is generalized to allow the description of non-sperical or fused-sphere reference fluids.
The reduced Helmholtz energy density is calculated according to
with the packing fractions
The geometry coefficients \(C_{k,\alpha}\) and the segment diameters \(d_\alpha\) depend on the context in which the model is used. The following table shows how the expression can be reused in various models. For details on the fused-sphere chain model, check the repository or the publication.
Hard spheres |
PC-SAFT |
Fused-sphere chains |
|
---|---|---|---|
\(d_\alpha\) |
\(\sigma_\alpha\) |
\(\sigma_\alpha\left(1-0.12e^{\frac{-3\varepsilon_\alpha}{k_\mathrm{B}T}}\right)\) |
\(\sigma_\alpha\) |
\(C_{0,\alpha}\) |
\(1\) |
\(m_\alpha\) |
\(1\) |
\(C_{1,\alpha}\) |
\(1\) |
\(m_\alpha\) |
\(A_\alpha^*\) |
\(C_{1,\alpha}\) |
\(1\) |
\(m_\alpha\) |
\(A_\alpha^*\) |
\(C_{1,\alpha}\) |
\(1\) |
\(m_\alpha\) |
\(V_\alpha^*\) |
Fundamental measure theory¶
An model for inhomogeneous mixtues of hard spheres is provided by fundamental measure theory (FMT, Rosenfeld, 1989). Different variants have been proposed of which only those that are consistent with the BMCSL equation of state in the homogeneous limit are currently considered in \(\text{FeO}_\text{s}\) (exluding, e.g., the original Rosenfeld and White-Bear II variants).
The Helmholtz energy density is calculated according to
The expressions for \(n_{12}\) and \(n_{22}\) depend on the FMT version.
version |
\(n_{12}\) |
\(n_{22}\) |
references |
---|---|---|---|
WhiteBear |
\(n_1n_2-\vec n_1\cdot\vec n_2\) |
\(n_2^2-3\vec n_2\cdot\vec n_2\) |
|
KierlikRosinberg |
\(n_1n_2\) |
\(n_2^2\) |
|
AntiSymWhiteBear |
\(n_1n_2-\vec n_1\cdot\vec n_2\) |
\(n_2^2\left(1-\frac{\vec n_2\cdot\vec n_2}{n_2^2}\right)^3\) |
For small \(n_3\), the value of \(f(n_3)\) numerically diverges. Therefore, it is approximated with a Taylor expansion.
The weighted densities \(n_k(\mathbf{r})\) are calculated by convolving the density profiles \(\rho_\alpha(\mathbf{r})\) with weight functions \(\omega_k^\alpha(\mathbf{r})\)
which differ between the different FMT versions.
WhiteBear/AntiSymWhiteBear |
KierlikRosinberg |
|
---|---|---|
\(\omega_0^\alpha(\mathbf{r})\) |
\(\frac{C_{0,\alpha}}{\pi\sigma_\alpha^2}\,\delta\!\left(\frac{d_\alpha}{2}-|\mathbf{r}|\right)\) |
\(C_{0,\alpha}\left(-\frac{1}{8\pi}\,\delta''\!\left(\frac{d_\alpha}{2}-|\mathbf{r}|\right)+\frac{1}{2\pi|\mathbf{r}|}\,\delta'\!\left(\frac{d_\alpha}{2}-|\mathbf{r}|\right)\right)\) |
\(\omega_1^\alpha(\mathbf{r})\) |
\(\frac{C_{1,\alpha}}{2\pi\sigma_\alpha}\,\delta\!\left(\frac{d_\alpha}{2}-|\mathbf{r}|\right)\) |
\(\frac{C_{1,\alpha}}{8\pi}\,\delta'\!\left(\frac{d_\alpha}{2}-|\mathbf{r}|\right)\) |
\(\omega_2^\alpha(\mathbf{r})\) |
\(C_{2,\alpha}\,\delta\!\left(\frac{d_\alpha}{2}-|\mathbf{r}|\right)\) |
\(C_{2,\alpha}\,\delta\!\left(\frac{d_\alpha}{2}-|\mathbf{r}|\right)\) |
\(\omega_3^\alpha(\mathbf{r})\) |
\(C_{3,\alpha}\,\Theta\!\left(\frac{d_\alpha}{2}-|\mathbf{r}|\right)\) |
\(C_{3,\alpha}\,\Theta\!\left(\frac{d_\alpha}{2}-|\mathbf{r}|\right)\) |
\(\vec\omega_1^\alpha(\mathbf{r})\) |
\(C_{3,\alpha}\frac{\mathbf{r}}{2\pi\sigma_\alpha|\mathbf{r}|}\,\delta\!\left(\frac{d_\alpha}{2}-|\mathbf{r}|\right)\) |
- |
\(\vec\omega_2^\alpha(\mathbf{r})\) |
\(C_{3,\alpha}\frac{\mathbf{r}}{|\mathbf{r}|}\,\delta\!\left(\frac{d_\alpha}{2}-|\mathbf{r}|\right)\) |
- |