{ "cells": [ { "cell_type": "markdown", "id": "135dd79e", "metadata": {}, "source": [ "# Surface tension using PC-SAFT Helmholtz energy functionals\n", "\n", "## Goal of this notebook\n", "\n", "- Learn how to compute the surface tension for a planar interface using the PC-SAFT functionals.\n", "- Learn about the `SurfaceTensionDiagram` that allows convenient calculation of multiple surface tensions." ] }, { "cell_type": "code", "execution_count": 1, "id": "9ad1bb1d", "metadata": {}, "outputs": [], "source": [ "import feos\n", "import si_units as si\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import numpy as np\n", "import seaborn as sns\n", "\n", "sns.set_context(\"talk\")\n", "sns.set_palette(\"Dark2\")\n", "sns.set_style(\"ticks\")\n", "\n", "colors = sns.color_palette(\"Dark2\", 2)" ] }, { "cell_type": "markdown", "id": "c7ec9a5b", "metadata": {}, "source": [ "### Water parameters for PC-SAFT \n", "\n", "In this example we will calculate surface tensions for water using the 2B association scheme. The parameters that we use, [were adjusted to vapor pressures, liquid densities and surface tensions](https://pubs.acs.org/doi/10.1021/acs.jced.0c00684). Parameters are available [here](https://github.com/feos-org/feos/tree/main/parameters/pcsaft)." ] }, { "cell_type": "code", "execution_count": 2, "id": "837c7770", "metadata": {}, "outputs": [], "source": [ "# Equation of state object.\n", "parameters = feos.Parameters.from_json(\n", " ['water_2B'], \n", " '../../../parameters/pcsaft/rehner2020.json'\n", ")\n", "pcsaft = feos.HelmholtzEnergyFunctional.pcsaft(parameters)" ] }, { "cell_type": "markdown", "id": "79b57b8b", "metadata": {}, "source": [ "Let's first compute the critical point. We will make use of the critical temperature later." ] }, { "cell_type": "code", "execution_count": 3, "id": "d6ed65fa", "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "|temperature|density|\n", "|-|-|\n", "|677.34347 K|18.70466 kmol/m³|" ], "text/plain": [ "T = 677.34347 K, ρ = 18.70466 kmol/m³" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cp = feos.State.critical_point(pcsaft)\n", "cp" ] }, { "cell_type": "markdown", "id": "2ad0235c", "metadata": {}, "source": [ "As you can see, the model overestimates the critical temperature." ] }, { "cell_type": "markdown", "id": "4c00eed3", "metadata": {}, "source": [ "## Surface tension for single VLE\n", "\n", "To compute the surface tension, three steps are needed.\n", "\n", "1. We need to compute the vapor liquid equilibrium (VLE) either at given temperature or pressure.\n", "2. Then, we need to initialize a density profile. We will use a hyperbolic tangent with the VLE bulk densities as limits.\n", "3. We solve the DFT equations to yield the equilibrium density profile and calculate the surface tension." ] }, { "cell_type": "markdown", "id": "8fa8d790", "metadata": {}, "source": [ "For the VLE, we use the `PhaseEquilibrium.pure` method. Here for $T = 300$ Kelvin." ] }, { "cell_type": "code", "execution_count": 4, "id": "f834af33", "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "||temperature|density|\n", "|-|-|-|\n", "|phase 1|300.00000 K|1.51670 mol/m³|\n", "|phase 2|300.00000 K|55.38975 kmol/m³|\n" ], "text/plain": [ "phase 0: T = 300.00000 K, ρ = 1.51670 mol/m³\n", "phase 1: T = 300.00000 K, ρ = 55.38975 kmol/m³" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vle = feos.PhaseEquilibrium.pure(pcsaft, 300*si.KELVIN)\n", "vle" ] }, { "cell_type": "markdown", "id": "21fb88cb", "metadata": {}, "source": [ "Next, we initialize the density profile. For the surface tension, a 1D DFT calculation in Cartesian coordinates is conducted. Thus, the density profile will be an 1D array (we have a single substance). \n", "\n", "To solve the DFT equations, the density has to be discretized which can be controlled by `n_grid`, the number of grid points. The surface tension is not very sensitive w.r.t the number of grid points but you should make sure to pick a large enough value. When in doubt, run multiple calculations varying the number.\n", "\n", "We also have to provide a width of the calculation domain, `l_grid`. The domain should be large enough that the bulk densities can be observed in the limits. You can check the resulting density profile to make sure that's the case.\n", "\n", "The critical temperature is used to come up with a good initial estimate for the density profile." ] }, { "cell_type": "code", "execution_count": 5, "id": "25c9d99d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 367 μs, sys: 10 μs, total: 377 μs\n", "Wall time: 363 μs\n" ] } ], "source": [ "%%time\n", "interface = feos.PlanarInterface.from_tanh(\n", " vle=vle, \n", " n_grid=512, \n", " l_grid=100*si.ANGSTROM, \n", " critical_temperature=cp.temperature\n", ")\n", "initial_density = interface.density / (si.KILO * si.MOL / si.METER**3)" ] }, { "cell_type": "markdown", "id": "303bb746", "metadata": {}, "source": [ "The above method does not yet run a calculation. If we try to extract the surface tension, it will return `None`. Let's store the initial density profile for a later comparison." ] }, { "cell_type": "code", "execution_count": 6, "id": "f915e37c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "interface.surface_tension == None" ] }, { "cell_type": "markdown", "id": "7a321fe5", "metadata": {}, "source": [ "To calculate the equilibrium density profile, we have to call the `solve()` method:" ] }, { "cell_type": "code", "execution_count": 7, "id": "77c08d7f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 11.8 ms, sys: 1.02 ms, total: 12.8 ms\n", "Wall time: 12.7 ms\n" ] } ], "source": [ "%%time\n", "surface_tension = interface.solve().surface_tension" ] }, { "cell_type": "markdown", "id": "19402ba2", "metadata": {}, "source": [ "`solve()` calculates the equilibrium density profile and returns the `PlanarInterface` object so that we can readily extract the `surface_tension`.\n", "\n", "The `PlanarInterface.density` contains the equilibrated density profile. Let's compare it to our initial density and zoom into the interesting region between 40 and 60 Angstrom. " ] }, { "cell_type": "code", "execution_count": 8, "id": "61992d8f", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAI+CAYAAADHM5VJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAtVRJREFUeJzs3Xd4VNXWx/HvzGTSSUJICL1DgABSpCodBbsUAQuiiCKK+tquchUb9gIqiIWrgI0mVVQQiIBK7xh6Cz0kpPfJzLx/hAzEJBBgMkOS3+e5eZx99jrnrCFckjV7n70NdrvdjoiIiIiIiMhlMro7ARERERERESndVFiKiIiIiIjIFVFhKSIiIiIiIldEhaWIiIiIiIhcERWWIiIiIiIickVUWIqIiIiIiMgVUWEpIiIiIiIiV0SFpYiIiIiIiFwRFZYiIiIiIiJyRVRYioiIiIiIyBXxcHcCJWHlypXMnj2brVu3kpiYSGBgIDVr1qR9+/Y88cQTeHjkf9sWi4Vp06axcOFCjhw5gtlspnHjxgwZMoQbb7zRTe9CRERERESkdDDY7Xa7u5NwlpycHEaPHs3ChQsBqFq1KiEhISQmJnLq1CksFgubN2/Gz8/PcU5WVhYPPvggmzZtwmQy0aBBAzIyMjhy5AgADz/8MM8995xb3o+IiIiIiEhpUKZGLF977TUWLlxI8+bNeeONN2jatKmjLyMjg9WrV+Pp6ZnvnA8++IBNmzZRo0YNJk+eTL169QBYvnw5//d//8fkyZNp3bo1PXr0cOl7ERERERERKS3KzIjl2rVrGTp0KNWrV2fhwoX4+/tf9Jy4uDi6devmmArboUOHfP2ffPIJkyZNIiIigrlz55ZU6iIiIiIiIqVamVm8Z8qUKQAMGzasWEUlQGRkJBaLhTp16hQoKgEGDx4MQFRUlGNqrIiIiIiIiORXJqbCZmVl8ffffwPQsWNH9u/fz8yZMzlw4ACenp40adKEAQMGUL169Xznbd26FYA2bdoUet2wsDBq1KjBsWPH2Lp1K7Vq1SrR9yEiIiIiIlIalYnCcvfu3VgsFgA2bdrEG2+84WgD/PHHH/zvf//jnXfe4dZbb3UcP3z4MMAFC8ZatWpx7NgxDh06dMEcZsyYwaxZs4qV77Fjx/D19aVNmzZ89NFHxTpHRERERETkalUmCsvY2FjH67xFe15++WUaN27MyZMnGT9+PL/99hsvvvgi9erVcyzqk5SUBEBgYGCR187rS05OvmgOUVFRxc45KSnposWqiIiIiIhIaVAmCsu0tDTHa29vbyZPnuwoCGvXrs24ceM4fPgwu3bt4osvvuDTTz8FcqfQApjN5iKvnbeKbGZm5gVzCA0NJSIiolj5Hjhw4KLXExERERERKS3KRGHp5eXleN23b98CI5BGo5EHHniAF154gb/++gubzYbRaHScd/602X/Lzs4GcgvWCxk8eLBjsZ+L6dev3yWNboqIiIiIiFzNysSqsOcXkvXr1y80Jm9/yrS0NBITEwEICAgAzk2JLUxeX16siIiIiIiI5FcmCsu8ohGKntZ6/qimzWYDoE6dOgBER0cXee28bUbyYkVERERERCS/MlFYhoWFObYSOXr0aKExece9vLwICgoCoGXLlgBs3ry50HNiYmI4duxYvlgRERERERHJr0wUlgA33XQTAD///DM5OTkF+n/66ScA2rZti4dH7qOlPXv2xGw2c/jwYdauXVvgnBkzZgDQtGlTateuXVKpi4iIiIiIlGplprB86KGHqFChAseOHeONN95wrPhqt9v59ttv+eOPPzAYDDzyyCOOc0JCQhg0aBAAL730EgcPHnT0RUZG8r///Q+Axx9/3IXvREREREREpHQpE6vCAgQHB/Ppp58ycuRIZs6cya+//kqdOnU4deoUsbGxGAwGnn/+edq3b5/vvOeff56oqCi2bNnCrbfeSsOGDUlPT3c8Wzls2DB69erljrckIiIiIiJSKhjsdrvd3Uk40+HDh/nyyy9ZvXo1Z86cwd/fn1atWvHggw/Srl27Qs/Jzs5m6tSp/Pzzzxw5cgSz2UyTJk2477776N27t9NzzNtuJCIigrlz5zr9+iIiIiIiIq5U5grL0kCFpYiIiIiIlCVl5hlLERERERERcQ8VliIiIiIiInJFVFiKiIiIiIjIFVFhKSIiIiIiIldEhaWIiIiIiIhcERWWIiIiIiIickVUWIqIiIiIiMgVUWEpIiIiIiIiV0SFpYiIiIiIiFwRFZYiIiIiIiJyRVRYioiIiIiIyBVRYSkiIiJSzvXo0YPw8HCOHTvmtGuGh4cTHh5+VeTz4osvEh4ezty5c51yvTwl8efmKlfy/REpjIe7ExARERGR8mPu3LkcP36cXr160aRJE3enI/+i749cLhWWIiIiIuVczZo18fT0xGw2O+2adevWLfT4vHnzWL9+PdWrVy+ycCmJfCS/K/n+iBRGhaWIiIhIOTdt2jSnX3Px4sWXfW5J5CP5Xcn3R6QwesZSRERERERErogKSxEREZFyrqhFaPIWvZkwYQJpaWl88MEH9OzZk2bNmtGlSxdef/11kpKSCr3mvxeHWbduHeHh4axfvx6A0aNHO2Ly7nGxfGJjY/nhhx94+OGH6dWrFy1atKB169YMGDCAb775huzsbGf9kTjs2LGDRx99lLZt29KqVSv69evH7Nmzi3Xu5s2befrpp+nSpQvNmjWjffv2PPzww6xatarQ+AkTJhAeHs6LL76IxWLhyy+/5KabbqJ58+Z07NiR559/npMnTxZ6bkxMDGPHjqV37940b96ca665hm7dujF06FC++uorLBZLvvjL+f7s3r2b8PBwWrduTUZGRpHv+8033yQ8PJwxY8YU689JygZNhRURERGRC0pJSWHw4MHs37+f+vXrU7NmTaKjo/nxxx/ZunUrM2fOxNPT84LXqFChAq1bt2bv3r2kpqZSp04dgoODHf1Vq1a9aB6zZ8/mk08+wcvLi9DQUBo1akRiYiI7d+5kx44dLF26lGnTpl00l+KKjIzkySefxGKx4OfnR7169Th9+jQvv/wye/fuveC5n376KZ999hkAgYGBNGzYkFOnTrFq1SpWrVrFE088wahRowo912KxMHz4cNauXUudOnWoU6cOhw4dYuHChWzYsIH58+cTFBTkiD9x4gQDBgzgzJkzmM1matWqhY+PDzExMaxbt461a9cyePDgCz6zWpzvT+PGjWnRogXbt29n8eLF9O3bt8B1srOz+fnnnwEYMGDABf+MpGxRYSkiIiLlVmaOhSxrTrHjAzy9MRgM+Y4lZ2dit9uLdb6nyYSPR/6iJ9uaQ0aOpYgzCvI3e2EyunbS2Y8//kjTpk1ZunQpNWrUAGDPnj089NBD7Ny5k/nz5zNw4MALXqNp06ZMnz6dIUOGsH79ekaMGEG/fv0uKY927doxZcoU2rZtm69IOnXqFGPHjmXZsmVMmTKFESNGXPqb/Je4uDheeOEFLBYLAwYMYMyYMXh7e2O325k7dy5jxowp8Hchz7x58/jss88ICQnh9ddfp1evXo6+JUuWMHr0aCZMmECrVq247rrrCpy/ZMkSqlevzsKFCx2jiidOnGD48OEcOHCAKVOm8PTTTzviv/nmG86cOUOnTp346KOP8hWEcXFxLFq06KILIRX3+zNw4EC2b9/OnDlzCi0sly9fTmJiIg0bNuSaa6654D2lbFFhKSIiIuXWZztWMH7r8mLHR93zKoFePvmOdZj9LsnZmcU6/64GrRnfOX8BNv/gVp7566di57Dk9ieJqFSt2PHOYDAYGD9+PNWrV3ccCw8PZ/jw4bzzzjusWLHiooWlM1x77bWFHq9SpQoffvghbdu2Zf78+U4pLGfMmEFycjI1a9bkjTfewGQyAbl/Fv3792f79u3MmDGjwHkWi4WPP/4YgI8++ogOHTrk6+/duzcxMTG89dZbfP3114UWlhaLhffeey/fVNVq1arx9NNPM2rUKFasWJGvsDx06BAA9957b76iEiAkJIQHHnjgsv4MCnPzzTfz9ttvs3HjRqKjo6ldu3a+/jlz5gAarSyPVFiWMnO+eBAPo5HO1RoC5z4ls9ht/HXyIHYAgwEwYDeQG2M05h7HcLYP6gWF0SCosiPWYDCwPymOfUmxYDBgJ+8aZ885G4eB3D6DkT61m+Fp8nD0GwxGfon+h2yb7dz9Dcaz8Wfvf97x2gEhtK/aAIPRCAYTBqOJQ6mJrD99GLvBhMFkAoxgNMHZGKPRhN149pjByE11mxPsE4jhbBujid+O7CTRkoXBaMSAAQNgNOS+MpzNw2AwYMRAqI8/11drkO/P+ExmKutOHc59W2fPNxjyrmPEaDBgMhgxGQwYjUbCg8II9vbLd41jqQmkWrLOxZ39r8lgxGg877XBgNlows/s5by/JCIiIk7WuXPnfEVlnrwRqaNHj7osl8zMTBYvXszGjRs5efIkGRkZjhFjg8HAoUOHyMzMxNvb+4ruk/cc5D333OMoKs93//33F1pYbtu2jVOnTlG7du0CRWWeXr168dZbb7Fp0yasVmuB6zdu3JiWLVsWOC/vz/vIkSP5jlerlvtBw9KlS+natWuJbtPi5+fHLbfcwuzZs5kzZw7PPPOMoy8mJoa///4bs9nM7bffXmI5yNVJhWUp03zttwDEFdZ3idc6/a92BaD1JZx/ppBjrS4xh2P/apuAjpdwfsLZr/M1PO+1FQNWgxG7wYANA1aDAdvZYtdqMOBhMnPQxx+MuYUtRhMZNhvG9GSsBiM5BhNWg4Ecg4kcgxGrwYjVaDzbl/tlrtqQ7MBQDB5mDEYPDCYzkcd2sz8lwXFOjsGI1Wgi22Ai2+iBxWjCYsx9HeATwMReD2Awe2H08MJg9iYmO4vbFk/GavLEavLAavLAZDJjNprwMJrwzPdfIw9HdGZAg/zfvZ/2byLy2B48jCbMZ788jEbHuebzvrw9zAxt3AEPY/4fbJtOR+Np9MDLwwNvkxlvkxkvkwfeHmY8jaYipwCJiEjZ8u9RqTwhISEApKWluSSPffv2MWLECI4fP37BuKSkpCsuLA8ePAhA/fr1C+2vU6cOHh4e5OTkn0q9Z88eABITE7n77rsLPTevEM7MzCQxMZFKlSrl67/Yn3d6enq+40OGDGH+/PnMnz+fVatW0blzZ1q3bk3btm2LzP9KDBw4kNmzZzN//nyeeuopR2E8d+5cbDYbN9xwQ4GRUyn7VFhKmWbCjsluhaIefbFATmb+1ew8gHqXcpPTu0j+16EOZ7+K69iGqQWOzfpXO8dgxHJeYZptPPe68rqvOVaxCgYvf4xefhi9/DAnxBCcEEumyUymyUyiyTP3tdFMhin3K9NkJsPkSaqHF0PD82dst9vp++sX2Ip4bsiAAS+TB35mT/zNXvSv35pnWvXKF7MxJpqlR3fhb/bC1+yJn4fn2dde+Ju9CPT0IdDLhyBPH7w9tAm2iLje4827Mbzp9cWOD/AsWKysvevFS3rG8t/urNeS3rUiip2Dvxtmufj6+hZ63JUfMFqtVp588kmOHz9Ox44deeSRRwgPDycgIMAxQtetWzdOnjxZYAXUy5FXvP276MtjMpkICgoiLi7/x/3Jybm/FSQlJbF58+aL3qew1VWL+vM2FvFsbaNGjZg+fToTJ07k77//ZsGCBSxYsMDR99xzz9G1a9eL5lJcLVq0IDw8nD179vDXX385rj1v3jwA+vfv77R7SemhwrKUOVj/OowGI82Dz62cZseO1WZl55kTYLdjwH72v7m9Bntu++wkVrDbCfH2o5KXD2DP/Z/dTnxmKgkZqWfjco+fu1beNc4dq+4biNGQez3sduzYiUlLxG6zOTIz/DufvDzsdryMJvw8PLDbrGCzYrdZybHmYMnJxmC35Z5rt2E8+1XeedhteNht+NgK+WGZepr0E1H5DjU5+1VcB1dPxOgTiMk3EKNvEAafAF6LPU6qhxdpHt6kenjm/tfkRZqHF6lnv5LNPpwy+5JiKfh80Za4I3y2Y0Wx7u9tMvP7HU9RLzAk3/Evdqwix24lyNOXIC8fgrxy/1vJ258QH3/MxoK/pImIFJe3h/mKP9gqrNi8FJ4mj9xHS+SCduzYwcGDB6latSpffPFFgRFJu91e5NYnl8PX15eUlBTOnClsjlZuoZuYmFjoeQBdu3blq6++clo+F9OsWTO++OILMjMz2bZtGxs3bmTx4sXs3buXkSNH8uOPPxY6vfZyDRw4kLFjxzJnzhy6du3Khg0biI6OpkqVKnTu3Nlp95HSQ/+KlTJ9xhS+7xFAzSu89pWeD1DHCdcoit1udxSg2KxgtxX62l6MvnOvrbmFsOO1Fbs1B2w52HMs2K2W3NdWS+5x6/mvc/vttrOvc3Jf262W8+Is+a5ls2Rhs2Riz8nCbsnAbsnGnpOFIScLe87ZPksWWK/8k9ZLZrNiS4vHlhbvOFT8z/AhZ+3nHJxZBVNAKKYKIXhUCKVmRjqDE2JJNPuSZPYh0fPsf82+pJs8Hc/8AmRaLVTwLPgp/OSoP4nJSCnyvkFevlT28SfE258u1RsxqkW3fP1Z1hzsdrtGREVESrm8PS2bN29e6DTXvXv3FpgieiXq1avHtm3bOHDgQKGjfYcPHy4wDRZyRwgB9u/f77RcLoW3tzft27enffv2PPbYYzz66KOsWLGCWbNmObWwvP322/nggw+IjIwkPj7esWhP3759ixxZlbJNhaWUGgaDAUweGMrBp7p2m+1s8ZmFPa8QzTn7Ol9xmncsA1tWGrbMNOzZabmvs9KwZ6bmvs5Ow56Vju1s2xGTmeq0ItYjJ4ucM9HknIl2HKsHPFJEfLbRg3hPP+I8/Tjj6U+clz8sCyI5uDoeFavhEVQdU3BNErOL3oAZIDErncSsdPZymmp+QQX6fz+yk5ErfiTYy4+qfgFU9Qukul9FalcIplaFYGpVqEitCpXcMrVMRKQ8yisKMzOLt5Luv8+LjY0ttP/rr7++ssT+pXPnzmzbto3p06fzwAMPFCiWvvvuu0LPa9OmDaGhoRw/fpzFixfTp08fp+Z1KQwGA9dccw0rVqzg9Ol/r65RuOJ+fwICArjxxhtZuHAhP/74I0uWLHGsmCvlU9n/DV2kFDIYjRg8fcDT5+LBV8hmycKWkYQtPQlbeiLWjNz/2tKTsKYnne1LxJaRhDU9EVt68rm4tHhsGf9+wrR4PG05VMlMosp5z7gmzCn4LMo87wCSfIOJ9w3itFcAJzz9iDb5cNjTjxPeQaSaz31qHeLjX+D8k2m514/PSiM+K42o+JOF5hPs5UfNChWZ2HUwdQNCCo0REZErV6tWLQA2btzI3XffXeznNFu2bInZbGbLli3MnDmTQYMGAZCdnc2kSZNYuHAhZrPZKc9XAgwePJhp06Zx5MgRXn31VV566SVH0TVv3jxmz55d6OI9np6ePPvss7z44ouMHj2a1NRU7rjjjnwrtcbFxbF06VJSUlJ45JGiPoItvldeeYW2bdvSvXt3/P3P/Sw8dOiQ47nHiIjiPcd7Kd+fgQMHsnDhQj7//HNycnJo3749NWs6Yw6clEYqLEXKOaPZC6O5MgRUvqzz7TnZWFPisKbEkpMSizUlNrednPc6Nl+/LS3e8bxucXhnJuOdmUxYfOHPjNp9AsmuWIPUwCr470ojKeMU5rCGeFZtjEdAKCfTi/e8TV7hWcFccHrV3Uv+h8lgpEFgKI0qhhERXI3woDBNrxURuQw333wzP/zwA7/88gtbt26latWqGI1G+vbtS79+/Yo8LyQkhIceeogvvviCV155hYkTJ1K5cmWio6NJSUnhiSeeYO7cuRddMba4QkNDeffdd3nqqaeYNWsWv/76K3Xr1uX06dPExMRw//33s3z58kLv17dvX2JjYxk/fjwvvfQSb731FnXr1sVoNBIXF8fJkycdcc6wbds2Zs6ciclkombNmgQGBpKUlER0dDR2u51GjRoxfPjwYl3rUr4/bdu2pW7duo59NLV3ZfmmwlJErojBwzN36mrFahRnMqndmoM1LR5r8mlyEk+Sk3gCa+JJchJOkJN4IvdYwnFyEk/kPvt6sftnJOGVkYTXiSjYtZyY8/qM/pV4oEo4QyrXJ7ViTeICq3DUN4R9Jk+OpCZyJCWeo6kJZFlzP2329fCk0r/2JLXYrKw5eZAcu40Vx/c6jucVmhGVqhERXJWI4Nz/VvzX+SIikl+bNm0YN24c3377LXv37uXEiRPY7XbatWt30XOffvppqlatyg8//ODYr7Jx48bcd9999OnTh7lz5zo11169ejlWW928eTP79++nXr16jBo1ioEDB7J8+fIiz33kkUfo0qUL33//PevWrWP//v3YbDZCQkLo3r07PXv2pGfPnk7Jc/To0fzxxx9s3LiRmJgYjh07hpeXF82bN+eGG25gyJAh+PgUbxbUpX5/+vfvz4cffkhAQAC9e/d2yvuR0slgL+762OI0/fr1IyoqioiICKf/AyhSVtht1twi88wRLGeOkBN/NPe/Z45giYvGEnsQe9bl7Ztm8PbHq0YLvGq1wLNmC9LDGnG8QhUSbDZ6184/VWhf4mm6zxtX7Gs/EnE9r7S79bLyEhERKW3eeecdpk6dyj333MOrr77q7nTEjTRiKSJXJYPRhDm4BubgGvg07FSg3263Y00+jeX0ASynD5B9+mDu69iDZJ/aiy218OXhAeyZqWTuX03m/tWOY0EGI5WrNOJkrWvwrtsW7/rt8Krdmqp+gUzr9QD7k06zL/E0uxJOsTvhlGOU89/qBYYWODb/4Fb2JsTQNqwO7cPq4mv2vIw/ERERkatLVlaWY7/Mu+66y83ZiLupsBSRUslgMOARGIZHYFihhWdOcizZJ3eRfWIX2Sd2n329m5z4o4Vf0G4j++Rusk/uJmXdzNxjJg+8al5Ds3rtaFu/Pd4N2mMO64/VbuNgchxRZ04SFX8i9+vMSeKz0mgTWrvApecd2MryY7sBMBtNtKlciy7VGnJ9tQZcU6kGJi3LLiIipdDkyZNJSEigVatWNG3a1N3piJtpKqwbaCqsiPvYMlLIOraDrKPbyDqyjawj28k6th37RbY1yWP0r4RveBd8GnfDt3FXPKtHYDAasdvtHE9LpKpvYL5C0W6302L6WBKyCt9bLdDTm05V69O5WkN61Ainhn9Fp7xPERGRkrBr1y7efvtt4uLiOHjwIAaDge+++462bdu6OzVxM41Yiki5YvSpgE/DTvlGOe02K5aY/WQd3UbmoU1kHlxP5qGN2LMLFoO21DOkbppH6qbc5dtzC83O+DTuRmjjrhh9A/PFZ9usjGjWhU2no1l76iAplqx8/UnZmfwWHcVv0VEA9Kvfik+7DHL22xYREXGK5ORk1q9fj9lsJjw8nFGjRqmoFECFpYgIBqMJz6rheFYNp0K7gUDu6rVZx/4h8+C63ELzwDqyT+wqcG5uoTmf1E3zATAFhOHXvDd+Lfrg2+xGvPwqMqpFNwBybFa2xR3nzxP7+PPEPjadPkKO3ZbvevUK2UMzzZKFr4dnsfd6ExERKSnt27dnz5497k5DrkKaCusGmgorUjpZ0xLJ2PcXGbtXkr5nFVmHN8O/CsN8DEa863fAr0Uf/Fr0watWKwznTZNNs2Sx9tQh/jyxj8hjeziYHMeyO/+PxhWr5LvMS2vms/ToLvrVb8XABm0KXSBIRERExJ1UWLqBCkuRssGankTG3rxCc+VFC01TYBX8W9+Bf5u++DbuhsHD7Oiz2+0cTI6jXkBIvpFJm91G25nvEJOR4jjWtnJtBja8ltvqtsDfXJzdQ0VERERKlgpLN1BhKVI2WVPPkPbPUtJ3LCZtxxKsyaeLjDX6BePf6jb8r+2Hb8QNGIsoEHcnnOKG+Z9gp+A/1T4eZm6p3ZyBDdvQoUpdjAatLisiIiLuocLSDVRYipR9dpuNrCNbSNu+mLTti8k8sLbI0UyjdwX8Wt5ChbZ34XfNzRg88u9zGZuRwvyDW5m5bxO7E04Veo26ASEMb3odAxu2wcdD+2SKiIiIa6mwdAMVliLljzX1DKlbfiZ141zSo5Ziz8kuNM7oF0yF9gMJ6Hgv3g065psWa7fb2XHmODP3bWL+wa0kFbJFyrjrBzCw4bUl9j5ERERECqPC0g1UWIqUb9aMZNK2/Urqxrmkbf+t0G1NAMyh9ajQ6V4COt6LZ5WG+foycywsPbqLWfs2sfLEXmx2O6E+/qy960W8TFrwW0RERFxLhaUbqLAUkTy2rHTS//mdlPWzSN28ALsls9A473rtCew6jArtB2P09s/XdyQlnq93/k11vyAeadY5X198ZhrP/DWbkc260r5K3RJ7HyIiIlK+qbB0AxWWIlIYa0YyqRvnkrLmR9J3RUIh/zwbvStQoeM9BHZ7GO/arS56zU+2LueDLUsB6FEjnBda9yaiUjWn5y4iIiLlmwpLN1BhKSIXY4k/RsraGSSv/p7sYzsKjfGqey2BXYcT0H4wRp8KBfqzrDl0mP0usRmp+Y7fUe8anmt1A3UDQkokdxERESl/VFi6gQpLEbkUWUe2kbTya5JXf48tI6lAv8Hbn4CO9xJ0wxN4VWviOG632/n75AE+2Pw7m2KP5DvHw2Dk7kZteaplT6r4BpT4exAREZGyTZueiYhc5bxqXUPlIZ9S7+NjhA3/Bu8GnfL12zNTSfrjS6L/24xjH95E2vbF2G02DAYD11drwPxbRvJNz/sJDwpznJNjt/HdnnVc/9MHvLNxMWmWLFe/LRGRy/Liiy8SHh5e4MP5uXPnEh4ezosvvpjv+LFjxwgPD6dHjx4FrtWjRw/Cw8NZt25dieQ6ZMiQEr3+1STvz/LYsWPuTuWShYeHEx4e7u40Sj0VliIipYTRy5fA64dS6+U/qT12K0G9RmH0CcwXk/7P7xwfdwuH/9uMxMjPsWWlYTAYuLFWU36/4yk+6TKImv4VHfGZVguf7VhB93nj2B5X+n4ZEBERKSlz585lwoQJ7Nq1y92plAoqLEVESiGvms2pfN8nuaOYwybjWbNFvn7LqT2c/nYUB5+uRezMF7DEH8NkNNK/fitW9nuWNzvcQajPudVlM3Is1Div4BQRuVqFhoZSt25dKlQo+Gx5YcxmM3Xr1qVmzZolnFlBVatWpW7duvj4+Lj83lJ8devWpW7dgiunz5s3j4kTJ6qwLCZtdiYiUooZvXwJ7DKMgM4PkrF7BQm/f0La1kWOFWVt6Ykk/PYhCb9/QsB1Qwi++Xk8qzTigSYdGdigDRO3/8Hn/6xiTNubCfb2c/O7ERG5uGeffZZnn3222PFhYWEsXry4BDMq2vvvv++W+8qlcdffj7JGhaWISBlgMBjwbdId3ybdyT59gMSlE0n+cwq2zJTcAKuF5FXfkPznFPyv7U/wrS/iW7sV/2nTm4ENr6V2heAC11x+dDchPv5cE1LDxe9GREREShtNhRURKWM8K9en8r3jqTv+CKF3j8Mj+LzpX3Y7qRt+4sir13Lsw5tI372S2hWCMRgM+a6RkJXOM3/N5rZFnzF2/S9kWXNc/C5ExNVsNhsLFy5k2LBhtG/fnmbNmtGlSxdeeOEFDhw4UOR5qampvPfee/To0YNmzZrRrVs3Xn/9dRISEpgwYQLh4eFMmDAh3zlFLbRzvqIWgylq8Z6iXGjxnvPt3LmTxx9/nA4dOtCiRQvuuOMOfvjhB2w2W4HYdevW5bvm7Nmzueuuu2jdujXh4eEkJycDRS/ec7H3UNwFh/bv389TTz1Fx44dadmyJf3792fZsmWO2JiYGF555RW6du1K8+bN6dOnD99///2F/8AuYMeOHTz66KO0bduWVq1a0a9fP2bPnl2sczdv3szTTz9Nly5daNasGe3bt+fhhx9m1apVhcbn/d158cUXsVgsfPnll9x00000b96cjh078vzzz3Py5MlCz42JiWHs2LH07t2b5s2bc80119CtWzeGDh3KV199hcViyRf/78V78r6/69evB2D06NGOmLy/z7t37yY8PJzWrVuTkZFR5Pt+8803CQ8PZ8yYMcX6cyrNNGIpIlJGmXwCqNj7KYJ6jiR5zY8k/PoB2Sd3O/rT//md9H9+x7tBJyr1fRXfpj0dBebbG3/jTGYaAF9G/cnqUwf5rOvd1AvU3pciZVFGRgZPPvmk45f8ypUrU7VqVaKjo5k/fz6LFy/m008/pWvXrvnOS0hIYMiQIezbtw+DwUCDBg0wGAzMmDGDVatW0b17d3e8nUu2ZcsWJk2ahNFopF69eiQmJrJ7927eeOMNNm/ezIcffljgA7g8r732GtOnTycsLIx69epx9OhRl+S8Y8cOPvvsM4xGI7Vr1+b48eP8888/jBo1inHjxtGkSROGDBlCSkoK9evXx2q1cujQIcaOHUtaWhojRoy4pPtFRkby5JNPYrFY8PPzo169epw+fZqXX36ZvXv3XvDcTz/9lM8++wyAwMBAGjZsyKlTp1i1ahWrVq3iiSeeYNSoUYWea7FYGD58OGvXrqVOnTrUqVOHQ4cOsXDhQjZs2MD8+fMJCgpyxJ84cYIBAwZw5swZzGYztWrVwsfHh5iYGNatW8fatWsZPHgwZrO5yHwrVKhA69at2bt3L6mpqdSpU4fg4HMze6pWrUrjxo1p0aIF27dvZ/HixfTt27fAdbKzs/n5558BGDBgwAX/jMoCFZYiImWcwcOTwM4PEHDd/aRunk/8L++RdWijoz9z/2qOf9Abn/CuVOr3Or7hnelbryXrYw5zICkWgB1njtNn4ae83fEOBjRo4663IuJ0tqx07DnZ7k7jkhk8PDF6+Trtem+88QarVq2iRYsWjB07lsaNGwO5v9R//vnnfPbZZzz//PMsXrw43y/Yb775Jvv27aNWrVp8/vnnNGjQAIBDhw4xcuRIZsyY4bQcS9LEiRPp3r07b7/9tmNRoGXLlvHMM8+waNEi2rdvz8CBAwucd+rUKebNm8eECRO48cYbgdxiwsOj5H/F/vjjjxk8eDDPP/88Xl5eWK1WXnvtNWbNmsX7779PSEgIbdq04c0333S8p4kTJzJhwgQmTZrEPffcU+wFkOLi4njhhRewWCwMGDCAMWPG4O3tjd1uZ+7cuYwZM6bIwnvevHl89tlnhISE8Prrr9OrVy9H35IlSxg9ejQTJkygVatWXHfddQXOX7JkCdWrV2fhwoWOUcUTJ04wfPhwDhw4wJQpU3j66acd8d988w1nzpyhU6dOfPTRR/n+vsbFxbFo0aILFpUATZs2Zfr06QwZMoT169czYsQI+vXrVyBu4MCBbN++nTlz5hRaWC5fvpzExEQaNmzINddcc8F7lgVlqrCcMGECEydOvGDMa6+9xt13313guMViYdq0aSxcuJAjR45gNptp3LgxQ4YMcfxDISJSmhmMRipc2w//Nn1Jj1pG/C/vkbHrD0d/xp6VHHunG74RvWjV7w0W3/4kYzf8wre71wKQnpPN//05m1Un9vN2xzvxN3u5662IOMXpH54mcdlEsBec6njVMxgJ6jWKyveOv+JL7d+/n3nz5hEcHMwXX3xBpUqVHH1ms5knn3ySvXv3snTpUmbNmsWjjz4KwNGjR/nll1+A3AIzr6iE3FU23333XQYNGnTF+blChQoV+OCDD/D29nYc69WrFw8//DATJ07kq6++4q677ipQPFmtVp599tl8vyt6enq6JOf69evz3//+F6Mx98k2k8nE888/z4IFCzh58iQ5OTl8++23+Pqe+wDi0UcfZebMmZw+fZp169blK/IuZMaMGSQnJ1OzZk3eeOMNTCYTkPt8f//+/dm+fXuhHyJYLBY+/vhjAD766CM6dOiQr793797ExMTw1ltv8fXXXxdaWFosFt577718U1WrVavG008/zahRo1ixYkW+wvLQoUMA3HvvvfmKSoCQkBAeeOCBYr3n4rj55pt5++232bhxI9HR0dSuXTtf/5w5c4DyMVoJZfQZy0qVKtG6detCv0JDQwvEZ2VlMXToUD744AP2799PrVq1CAoKYv369TzxxBN8+OGHbngXIiIlw2Aw4NfsBmq+sIyaL/2JT5P8z/CkRy3j6NhOxE/oxytVa/FV9/sI9Dz3y9bcA1voveBTtmnfSynlEpd/VjqLSgC7LTd/J1iyZAl2u52ePXvmKyrPl1eA5D1zBvDXX39ht9tp1KgR7du3L3BOy5YtadGiRYHjV6MBAwbkKyrz3HvvvUBuEZ1XsPxbYSNVrtC/f39HUZknICCAGjVyF1y75ZZb8hWVAB4eHo4C7ciRI8W+V94U6XvuucdRVJ7v/vvvL/S8bdu2cerUKWrXrl2gqMyT93dr06ZNWK3WAv2NGzemZcuWBY7njQD++31Uq1YNgKVLlxZ4ltLZ/Pz8uOWWW7Db7Y4iMk9MTAx///03ZrOZ22+/vUTzuFqUqRHLPF26dOHdd98tdvwHH3zApk2bqFGjBpMnT6ZevXpA7vD1//3f/zF58mRat2590Ye+RURKG5+Gnaj5wlLSd63gzLxXydj7l6MvbduvpG37lZZtB7D45hd5atc61sccBiA65Qx3LJrEi2368Eiz6zEayuTnlFLGBfV8vPSOWBpNBPV83CmX2rNnDwCrV68udFYXQEpK7grTp06dchw7ePAgkDtyVpQGDRqwfft2p+RZkop6D8HBwQQHBxMfH8+hQ4ccvyPmqVixYoFRMVepVatWoceDg4M5cOBAkf15Hx6kp6cX+14X+17XqVMHDw8PcnLyL/SW93crMTGxyL9b9rPbY2VmZpKYmFjgw41/jwLmCQnJfeb/3+9jyJAhzJ8/n/nz57Nq1So6d+5M69atadu27QX/rl6ugQMHMnv2bObPn89TTz3lKLznzp2LzWbjhhtucNvfEVcrk4XlpYiLi3MM3b/11lv5/sHo2bMnw4cPZ9KkSUycOFGFpYiUWb5NuuHTeAXpUUs5M/dVMg+eG5VI3fATbF7A5z0fY2bj6/lwzwZsdjs5dhsTd6zgjnrXUNUv0H3Ji1ymyveOJ2TAW+X+Gcu8ovH48eMcP378grGZmZmO13m/0Bc1ynmxvqvJhfIMCQkhPj6etLS0An3/HhF0JR8fn0KP503XvVh/XkFXHBf7XptMJoKCgoiLi8t3PG913KSkJDZv3nzR+xS2umpRf8b/Hq3N06hRI6ZPn87EiRP5+++/WbBgAQsWLHD0PffccwUWoboSLVq0IDw8nD179vDXX385rj1v3jwgd2S5vCj3hWVkZCQWi4U6deoUOkQ/ePBgJk2aRFRUFEeOHCny0x8RkdIud4rsjfhG3EDatl84M+81sqK35HZaLST9/gk3+31L524jecziySlLJv/rcZ+KSinVjF6+4MRFcEqjvF/cn3/+eYYPH37J5505c6bImKL6ilPcXMqI2pW60HvIK5b8/Pycdr+Lvf8LbV/hDr6+vqSkpBT552S1WklMTCz0PICuXbvy1VdflWSK+TRr1owvvviCzMxMtm3bxsaNG1m8eDF79+5l5MiR/Pjjj4VOr71cAwcOZOzYscyZM4euXbuyYcMGoqOjqVKlCp07d3bafa52ZXLu0u7du3n22We5//77GTlyJB9//DH79u0rNHbr1q0AtGlT+CqHYWFhjrnqebEiImWZwWDAv+Wt1Hp1PVUe+TbfPpi2tAT8fnmb7zZPZXqVKrQPq+vGTEXEGRo2bAhQ5O9KRcmb5XWhPS73799f6PG80bR/j3DlSUpKIiEh4ZLyuRJFvYf4+Hji4+OB3AWJnCXv/RdVqB0+fNhp93KGi32vDx8+XGAaLOSOEELRfw9Kmre3N+3bt+fxxx9n4cKFdOvWDavVyqxZs5x6n9tvvx1vb28iIyOJj493PG/Zt2/fIkdWy6Iy+U537drFokWLWLduHZGRkXz++efcdtttvP322wUeCs77P+6FRiLz+op6aBtyV8vq169fsb4u9A+wiMjVwmA0EtDpXuq8u4uQAW9j9D63LL0t7jDB0/+Po291IfPwuelNCVnp/Hni0n45FRH36tOnD5C7iM+JEyeKfd7111+PwWBg7969bNiwoUD/9u3bi3y+sk6dOkDu72zZ2QWnIv/444/FzsMZ5syZQ1ZWVpF51KhRw6mFZd5zg1u2bCm0f/r06U67lzPkjbpNnz4dm63gM8nfffddoee1adOG0NBQjh8/zuLFi0s0x4sxGAyOBX9Onz5drHPyFnQ6fwp4YQICArjxxhuxWCz8+OOPLFmyxLFibnlSpgrLypUr8+STTzJ79mzWrFnDjh07WLhwIYMHD8ZutzNt2jQ++uijfOckJSUBuZu1FiWvL2+eeGFiY2OJiooq1tfF/nKKiFxNjJ4+BN/6AnXe30tgj5FgPLciYOb+1Rx5vT2nv3+KzJQzPBz5Hff+/g3f7PzbjRmLyKVo3Lgx/fr1IyMjgwceeCDfyq95Dhw4wKeffkpkZKTjWM2aNR1F6csvv5zvg/PDhw/z4osvFrlfYKNGjahWrRpnzpzh/fffz/fB/6+//sqXX3550b0GnSk5OZn//Oc/pKamOo5FRkYyefJkAB5++OEi92m8HN26dcNgMPDHH384tmyB3J0Kxo0bV+j3wJ0GDx5MhQoVOHLkCK+++mq+32XnzZvH7NmzC92709PTk2effRaA0aNH89NPPxVYqTUuLo7p06c7barsK6+8ws8//5zvewm5A0R5zz1GREQU61p5g0sbN2686DOpefucfv7556Snp9OuXTtq1qx5wXPKmjL1jGVheyWFh4fz+uuvU6NGDT788EOmTZvGPffc45jemvfp1IX+8crbj+hCBWFoaGix/5IeOHBAxaWIlDoeAZUJu38iFXuNInbWC6RtXZTbYbeRuGwiJ//+Ht/a12Gr3IRX1v3MweQ4Xmt3Kx7GgkvTi8jV5bXXXiMtLY0lS5YwZMgQQkJCqFatGjk5OZw4ccLx/Nw777yT77xXXnmFPXv2cPDgQW655RbHtNr9+/dTrVo1Bg8eXOholtFo5MUXX+Spp57iu+++Y8GCBdSqVYuYmBhiY2MZNWoU8+bNu+hiQs4yatQoJk2axPXXX0/9+vVJSEhw3Pumm25y+n6ctWvX5r777uO7777jmWee4b333iM0NJRDhw5hsVh4+eWXefXVV516zysRGhrKu+++y1NPPcWsWbP49ddfqVu3LqdPnyYmJob777+f5cuXF/r96tu3L7GxsYwfP56XXnqJt956i7p162I0GomLi+PkyZOOOGfYtm0bM2fOxGQyUbNmTQIDA0lKSiI6OtqxPU5xnyW++eab+eGHH/jll1/YunUrVatWxWg00rdvX/r165cvtm3bttStW9cxw7G87F15vjJVWF7IsGHD+Pbbbzl9+jSRkZGO/Xa8vHI3+L7QPjd5UzQK298oz+DBgxk8eHCxcunXrx9RUVHFTV1E5KriWa0x1f9vAWn/LOX0d09gicmd+uqTkcjLu3/hllM7+KRBL6buWsPRlAS+6H4vPh6uG3kQkUvn5eXlGJGcO3cu27ZtY9euXZhMJqpUqUL37t3p1atXgYVIgoODmTVrFp999hlLlizh0KFDhISEMGjQIJ566im+//77Iu/Zu3dvvvzyS7788kt27drFwYMHCQ8P56WXXuKmm25yjC65QqtWrZgxYwafffYZGzduJD09nUaNGjFo0CDuuecep45W5nnppZeoUaMGs2fPJjo6mqysLNq3b8+oUaMuOJPOXXr16uVYbXXz5s3s37+fevXqMWrUKAYOHMjy5cuLPPeRRx6hS5cufP/996xbt479+/djs9kICQmhe/fu9OzZk549ezolz9GjR/PHH3+wceNGYmJiOHbsGF5eXjRv3pwbbriBIUOGFLli7r+1adOGcePG8e2337J3715OnDiB3W6nXbt2hcb379+fDz/8kICAAHr37u2U91OaGOyXstZwKTdq1CiWLl3Kfffdx5gxYwC4++672bx5M08//TSPPvpooec9+OCDrF69mscee4ynnnrqivPIKywjIiKYO3fuFV9PRMRdbJYsEn77kPif38ZuOTcTw2IwMqtGW76v3ZF2NZvwTc/78fHwdGOmIuIOEyZMYOLEiYwaNYonnnjC3emIlKh33nmHqVOncs8991xVI86uUqaesbyYvOmu569alffweHR0dJHnHTlyJF+siIjkMpq9qHT7S9R+awd+LW5yHDfbbdx7dB1fb5xC0s4/GLp0KumW0rdXoIiISHFkZWU59su866673JyNe5SrwjJvGe0qVao4juXtYVPUpq15Q+jnx4qISH6eletR7emfqfbEnHzbk1TLTGLcthlc89f/ePC3L0i1FFx1UUREpLSbPHkyCQkJtGrViqZNm7o7HbcoN4XlihUrHIXldddd5zjes2dPzGYzhw8fZu3atQXOmzFjBgBNmzZ1LA0tIiIFGQwG/NvcSZ13oqh48/OO1WONwF3HN/Hwb2MZPf0VUrK1eJmIiJR+u3btYsiQIdx0001MmDABg8HgWAW3PCozheW+fft45ZVX2L17d77jNpuNRYsWOb7J3bt3p0WLFo7+vAfMIfch6oMHDzr6IiMj+d///gfA448/XtJvQUSkTDB6+RE68F1qvvwX5qqNHcdrZcTzWORHrPv6EWwauRQRkVIuOTmZ9evXc/ToUcLDw/n0009p27atu9NymzKzeM+uXbu48847AQgKCqJatWqYTCaOHDni2Kvy2muv5fPPPycgICDfuZmZmTzwwANs2bIFk8lEw4YNSU9PdzxbOWzYMF544QWn5arFe0SkvLBlZxA3ZwwJSz7GwLkfN541mlPl4Sl4127lxuxERETEWcpMYZmcnMwPP/zA1q1bOXDgAPHx8WRnZxMYGEjTpk259dZbufXWWzGZCt9PLTs7m6lTp/Lzzz9z5MgRzGYzTZo04b777nP6csEqLEWkvEnf8ycHv7gPz4Rj5w6aPAgZ8DYV+zxTIkv5i4iIiOuUmcKyNFFhKSLlkS0rjdhZL5K0fFK+436tbqfK8CmY/ILck5iIiIhcsTLzjKWIiFzdjF5+hA2ZQI3//J5v5di0LQuJfvVaMg8Xvjq3iIiIXP1UWIqIiEv5Nu1J7Tc2EV+vveNYTtwhjr55PYl/fIkm0oiIiJQ+KixFRMTlDH4V+arjw3xd53qs5D5fac/J4vS0xzj11f3YMlPdnKGIiIhcChWWIiLickaDkc+638vOawfyfIuBxJt9HX0pa37kyBsdyDqxy40ZioiIyKVQYSkiIm7h4+HJ1F5DSazVihFthrItsIajL/vELo680YG07b+5MUMREREpLhWWIiLiNpW8/fn+xmEYAqvw7DWDmF6znaPPnpnK8Y/vIHHFZDdmKCIiIsWhwlJERNyqTkAlpvYaipfZi8n1uvJSRF8yTJ65nTYrp6c+StxPL2tRHxERkauYCksREXG7lqE1+aLbvZgMRtaENOCpawaT6FXB0R+/6B1OfTkEmyXLjVmKiIhIUVRYiojIVaFnzca80+lOAPZXCOPRlvcQF3TuucuUtdM5/mEfrKnxbspQREREiqLCUkRErhr3NGrHky26A+AbWpeg53/Ht2lPR3/GnlUcfaszlthD7kpRRERECqHCUkRErirPtb6BF1r35pfbRtG0ejjVn1lEwHX3O/qzT+7myNhOZB7e5MYsRURE5HwqLEVE5KpiNBh54pruBHr5AGDw8CRs+DdUuvNVR4w1+TTH3ruBzIMb3JWmiIiInEeFpYiIXPUMBgM+t7xIyLD/gckDAFtGEsc+6E3moY1uzk5ERERUWIqIyFXvYFIsty36jPGelag26icwmYHziktNixUREXErFZYiInJV2xp7lJt/nsiexBim7FrNssCaVHt85rniMj2RY+/fqOJSRETEjVRYiojIVS28YhXqVKjkaD//9xyO1W1/trg8Oy02PfHsyOVmd6UpIiJSrqmwFBGRq5qPh5mvetxHoGfuYj4ZORYeifwee7PeVHvsvOIyLYFjH9yo4lJERMQNVFiKiMhVr1aFYD7tMggDBgAOJsfxn7/n4tf6Dqo+NqNgcRm9xZ3pioiIlDsqLEVEpFToWbMxT7Xs4Wj/fHg78w9uo0KbvlQdOT1/cfn+jWQd3+muVEVERModFZYiIlJqPH1NTzpWqedov7x2PifTkqhwbT+qPvojGE0A2NLiOT7+NnKSYtyVqoiISLmiwlJEREoNk9HIuOsH4G/2AiApO5Pn/voJu91Ohbb9qfroD2DInS6bE3eYE5/ciS0r3Z0pi4iIlAsqLEVEpFSpWSGY19vf5mivPLGP7/asA6BCu7sIHfyhoy/z4HpOfXU/dpvN5XmKiIiUJyosRUSk1BnYoA031mwC5K4a62E89+Ms6ManCOwx0tFO3TSPuFkvujxHERGR8kSFpYiIlDoGg4H3ruvHDTWbsOT2p7inUbt8fZXv/Ri/Fjc5jiUs/ojEyC/ckaqIiEi5oMJSRERKpVCfCkzpNZR6gSEF+gwmD6qOnI5XrZaOY6e/e4K07b+5MEMREZHyQ4WliIiUSUafClR7eiEeFavnHrDbODFpMFlHtrk3MRERkTJIhaWIiJQZ6ZZsxm9dRmaOBQBzxepU+7+FGLz9AbBnpnJ8/G1YEo67M00REZEyR4WliIiUCRtjorlxwSd8tGUZH2xZ6jjuXbslVUdOB0Puj7ychOOc+KQvNkuWu1IVEREpc1RYiohImbDw0DYOp5wB4Kt//mRDzGFHn/81N1P5vk8d7azDm4ib+R9XpygiIlJmqbAUEZEyYfS1fagfGAqAHTsvrp6HxWZ19Af1HElgj0cd7cRlE0nZMMfleYqIiJRFKixFRKRM8PHwZNz1AxztPYkxfB31d76Y0MEf5VspNuabh8k+fdBVKYqIiJRZKixFRKTMaFO5dr49LT/aupTjqYmOttHTm6qPzXAs5mPLSOLk5/dgz8l2daoiIiJligpLEREpU0Zf24dgLz8AMnIsvLJuYb5+zyoNCXvgS0c769AGYme+4NIcRUREyhoVliIiUqZU9PJlTNubHe0lR3ay9MjOfDEBHQYT2O1hRztx6aekbprvqhRFRETKHBWWIiJS5gxo0Jr2YXUd7THrFpJuyT/dNfSe8XjWbOFon/r6ISyxh12VooiISJmiwlJERMocg8HAO53uxOPs3pXHUhP5eNvyfDFGTx+qPTYDw9lps7b0RD1vKSIicplUWIqISJnUKCiMEc26ABDs5UejoLACMZ5Vwwkb+rmjnXlwHXGz/+uyHEVERMoKD3cnICIiUlL+r2UPbHY7jzXvQkVvv0JjAjrdS/ruFSSv+gaAhCXj8WnaA/9rbi40XkRERArSiKWIiJRZPh6evNT2piKLyjyV7/0EzxrNHO3TUx/Fmp5U0umJiIiUGSosRUSk3DN6+VJ15I8YPDwByEk4TtzM/7g5KxERkdJDhaWIiJQrCVnpzDmwpcBxr+oRBN8+xtFOWvk/0ndGujI1ERGRUkuFpYiIlAt2u53Z+zbRdc5H/N+qWUSdOVEgJvjm5/Gq1dLRjpnyCLasNBdmKSIiUjqpsBQRkXIhx27j839WEp+Vhh07Yzf8it1uzxdj8DAT9tD/wGgCwBJ7iLifXnZHuiIiIqWKCksRESkXzEYTL117bqXXv07uJ/LYngJx3rVbEXzz84524rIJZOxb7ZIcRURESisVliIiUm70qBFO52oNHO03N/xKjs1aIC749jF4Vm2c27DbifnmYWzZma5KU0REpNRRYSkiIuWGwWBgTNubMWAAYF/SaWbs3VggzujpTdiwyWDIjcs+uZv4hW+6NFcREZHSRIWliIiUK02DqzGwYWtH+8MtS0kpZDTSp2Engno94WjH//o+mdEFV5MVERERFZYiIlIOPdfqRnw8zADEZaby+Y6VhcaFDHgTc2jd3IbNSszXw7HnWFyVpoiISKmhwlJERMqdqn6BjGjWxdH+MupPTqQmFogzevkR9uCXjnbWka3E//qBK1IUEREpVVRYiohIuTSyWRcq+1QAIMuaw/ubfy80zrdpTwK7Dne04xeOJfv0AZfkKCIiUlqosBQRkXLJz+zFc61vcLRXnzpAqiWr0NiQQe9jCqoGgD0nm9gZzxcaJyIiUl6psBQRkXJrUINraRNai+db3cDKfs/ib/YqNM7kG0jooPcc7bTNC0jfudxVaYqIiFz1VFiKiEi5ZTIamX/LSJ5q2RMfD88LxlbocDfeDTo52qd/fAa7NaekUxQRESkVynRhuXLlSsLDwwkPD6dHjx5FxqWlpTF+/Hj69OlDixYt6NChAyNGjGDdunUuzFZERNzBcHavyuLEVb53vKOdfewfklZMLqm0RERESpUyW1impaXx2muvXTQuPj6e/v3788UXX3D8+HHq16+Pl5cXK1asYOjQofzwww8ln6yIiFxV7HZ7oce9615LQOcHHO24ua9gTY13UVYiIiJXrzJbWI4fP54TJ07Qs2fPC8a99NJLHDp0iIiICJYtW8a8efNYsWIFb7zxBna7nbfeeotdu3a5KGsREXGndEs2n+9YSZ+Fn5JZxH6VIf3fwuDtD4AtLZ4zC95wZYoiIiJXpTJZWG7dupUffviBnj170qtXryLjdu7cSWRkJEajkfHjxxMWFgbkTncaNGgQd9xxB1arlUmTJrkqdRERcZNsaw495o/jrY2/ERV/kh/2ri80ziOoCpVue8nRTlw+iazjO12VpoiIyFWpzBWWFouFMWPG4O3tzSuvvHLB2CVLlgDQoUMHateuXaB/0KBBQO6zmunp6c5PVkRErhqeJg9uqNnU0f5s+woycrILjQ268SnMlevnNmxWYn98usjpsyIiIuVBmSssv/zyS/bu3ctTTz1FlSpVLhi7detWAK699tpC+1u0aIGnpydZWVmaDisiUg6MatENL5MHAKczUvh299pC44xmL0IHf+Bop0ctI23rIpfkKCIicjXycHcCznTgwAG+/PJLIiIiGDJkyEXjDx8+DECtWrUK7TebzVStWpXo6GgOHTpEmzZtirzWjBkzmDVrVrHzFBGRq0+YbwBDG3fgq6i/AJi0YyX3hbfHr5D9Lf1a3Y5v056O/SxjZzyHX/PeGC6ybYmIiEhZVGYKS7vdzssvv0xOTg6vv/46JpPpouckJSUBEBgYWGRMXl9ycvIFrxUbG0tUVNQlZCwiIlejx5p34/s960nPyeZMZhpTdq1hVItuBeIMBgOh94wjekwrsNuwxOwnYekEgm961vVJi4iIuFmZKSx//PFHNm/ezJAhQ2jevHmxzsnKygJyRyaL4umZ+8lzZmbmBa8VGhpKREREse574MCBi15PRETcI8THnwebdOKzHSsA+OKfVQxt3IEKnt4FYr1qNCOwx6MkLc9d5C1+wVgCOt2HR2CYCzMWERFxvzJRWMbExDBu3DjCwsL4v//7v2Kf5+XlRUZGBhZL4UvKA2Rn5y7c4O1d8BeK8w0ePJjBgwcX6779+vXT6KaIyFXs0WadmbZ7DamWLBKz0vl659/8X8vCt68K6fsaKWunY0tLwJaZwpl5rxL2wBcuzlhERMS9ysTiPWPHjiU1NZWXX34Zf3//Yp8XEBAAnJsSW5i8vrxYEREp+yp6+/FQ0+sc7a+i/iQxq/DVwU3+lah052uOdtKfU8g+rWfpRUSkfCkTheXOnbn7h73++utcd911+b7eeustAE6ePOk4tnnzZgDq1KkDQHR0dKHXtVgsnDhxIl+siIiUDw9HXE/A2emvydmZTD67oE9hgro/gjm0bm7DmsOZ+W+4IkUREZGrRpkoLPPExcUV+EpNTQXAZrM5juVNfW3ZsiUAmzZtKvR627dvx2Kx4OXlRZMmTVzyHkRE5OoQ5OXLIxGdHa8refsVGWvw8CT4jjGOdsqaH8g6vrPEcxQREblalIlnLCMjI4vsmzt3LqNHj6Z69eoF4nr37s2XX37JunXriI6Opnbt2vn6Z86cCUCXLl3w8yv6FwoRESmbHmp6HR5GU5GL95wvoNN9JPzyPtknd4Pdzpl5r1FtVPG2oRIRESntytSI5aWKiIige/fuWK1Wnn76aU6fPg3kbl0yc+ZMFixYgNFoZOTIkW7OVERE3KGCpzejWnS7aFEJYDCaqNT3VUc7deMcMqO3lGR6IiIiV40yMWJ5Jd5++23uvvtuoqKi6NmzJw0aNCAhIYGTJ09iMBj473//W+xtREREpHzzv3YAXjXfJevoNgDOzH2F6k//7OasRERESl65HrEECA4OZs6cOTz66KNUq1aN/fv3k5GRQZcuXZg6dSpDhgxxd4oiInIVybLmkGrJKrTPYDRSqd/rjnbatl/J2L/GVamJiIi4jcFut9vdnUR5k7ePZUREBHPnznV3OiIiUgxplix+2LOeL6P+ZED91oy+tk+hcXa7naNjryPz4DoAfJr0oOYLS12ZqoiIiMuV+xFLERGR4vhhz3re2PALMenJTNu9hqSsjELjDAYDlfqf224kY1ck6TuLXmRORESkLCh2YWm1Wlm1ahWLFi0iJibGcXzNmjU8//zzjBgxgkmTJjm29xARESlL7glvR+DZRXxSLVl8u3ttkbG+TXvi07ibox039xU0QUhERMqyYi3ek5aWxtChQ4mKisJut+Pt7c3nn39OcnIyTz31FF5eXuTk5LBy5Up++eUXZs2ape05RESkTPE3e/FAk058si139PF/O/9ieMR1+Hh4Fog1GAyE9H+Do291ASBz/xrStv+G/zU3uzRnERERVynWiOXUqVPZvXs3zz33HB9//DFhYWGMHTuWyZMn8/HHH7Nlyxa2bNnCf//7Xw4ePMiUKVNKOm8RERGXe6jpdfh4mAE4k5nG9L0bioz1aXgdvi3OPYd5Zu4r2G22Es9RRETEHYpVWC5evJh+/frx0EMP0adPH0aPHs3Bgwdp27Ytffr0wWg04unpyf3330/37t1ZtmxZSectIiLicsHeftzTqJ2j/cU/q8i25hQZH9Lv3LOWWdFbSN00r0TzExERcZdiFZbHjh2jWbNmjnbjxo0BaN26dYHYdu3aER0d7aT0REREri4jIjpjNpoAOJGWxPyDW4uM9a7TBv82fR3tM/NexW6zlnSKIiIiLleswtJoNGK1nvtB6OXlBYC/v3+BWF9f33yxIiIiZUk1/yD61W/laE/asRKbvegprpX6vQ4GAwDZJ3aRuuGnEs9RRETE1YpVWFauXJlTp0452n5+fowZM4Z69eoViD1+/DjBwcHOy1BEROQq81jzrhjILRb3J8WyOHpnkbFe1SOo0H6Qox2/6D2tECsiImVOsQrLiIgItmzZ4mh7enpy7733EhYWViB29erVNGnSxHkZioiIXGXqB4Zyc51zj4hM3P7HBYvF4FtedLzOOrqN9B1LSjQ/ERERVytWYfnss8/y/PPPXzTuzJkzNGjQgIEDB15xYiIiIlezUc27ARDo6U33GuFYLvDspFfN5vidt9VI/C/vlXR6IiIiLmWwaz6Oy/Xr14+oqCgiIiKYO3euu9MREZHLtPDgNrrXCKeCp/dFYzP2/e3Y1xKg5kt/4tOwU0mmJyIi4jLFGrEUERGRgm6vd02xikrI3dfSp1FnRzt+0bsllZaIiIjLqbAUERFxkeBbX3C8Ttv2C1lHd7gxGxEREee5osLSYrFw2223ERkZ6ax8RERESq1saw7xmWlF9vs274NXzWsc7fhf33dFWiIiIiXuigpLu93Ovn37SE5OdlY+IiIipU66JZv/Rf3FdT99wGvrFxUZZzAYqHjLfxztlHUzscQeckWKIiIiJUpTYUVERK7Q0qO7eG39Ik6mJ7Hw4DZOpiUVGVuh7QDMlevnNmxW4n/70EVZioiIlBwVliIiIlfoljrNqO4XBECO3caUXauLjDWYPKh483OOdvKqKeQkxZR0iiIiIiVKhaWIiMgV8jCaGNb03NYhP+xZR5olq8j4gE73YwqsAoA9J4uE3z8p8RxFRERKkgpLERERJ7i7UTv8zV4AJGVnMnPfxiJjjZ7eVOz9tKOdFPk51vSip8+KiIhc7VRYioiIOEGApzd3N2rraH+982+sNluR8UHdR2D0DQLAlpFMUuTnJZ2iiIhIiVFhKSIi4iQPNb0Oo8EAQHRKPEuO7Cwy1uhTgaCejzvaCb9/gi07o8RzFBERKQkqLEVERJykhn9Fbqnd3NGeHPXnBeODbngCg6cPANbk0yT/ObUk0xMRESkxKixFRESc6JFmnR2vN5yOZnPskSJjPQJCCezykKOdsHgcdpu1RPMTEREpCSosRUREnKhVaE3aVq7taE/+568Lxlfs8wwYTQBYYg+StnVRieYnIiJSEq6osPT09GT58uXceOONzspHRESk1Msbtaxg9qJWhWDsdnuRseaQ2vi36etoJ/z+aYnnJyIi4mweV3qB6tWrOyMPERGRMuPGmk15t1Nf7qzX0rEFyYVUvPEpUjf8BEDG7hVkRm/Fu3bLEs5SRETEeTQVVkRExMlMRiP3hbcvVlEJ4N2gI151z21VkrhUo5YiIlK6XPGIZWGsViuHDx8mOTmZnJycC8a2bdv2gv0iIiJlncFgoOKNT3LqyyEApKydTshd7+ARGObmzERERIrHqYXlqVOnGDduHEuXLiUzM/Oi8QaDgZ07i97jS0REpKyw2mxA7mhmYSq0HUDszBewJp7AnpNN0h9fUunOV1yZooiIyGVz2lTYo0ePMmDAAH7++WcyMjKw2+0X/bKd/SErIiJSVqVasvhf1F90nvMhiw7vKDLO4OFJUM/HHO3EyM+xWbJckaKIiMgVc9qI5bhx44iLiyM4OJhnn32W66+/npCQEEwmk7NuISIiUuq8vn4R0/duAOCrqD+5vW4LDAZDobFB3R4mfuGb2C2ZWJNPk7JuBoHXD3VluiIiIpfFaSOWq1evxmAwMG7cOPr3709YWJiKShERKfeGNu7geL0t7hgbTkcXGWuqEEJAp/sc7cTfP73gViUiIiJXC6cVltnZ2Xh7e9OhQ4eLB4uIiJQTzSpVp1OVeo72lJ2rLxgfdOOTjtdZR7aSsWdVieUmIiLiLE4rLGvUqKFPVUVERAoxrOl1jte/Rv/DibSkImO9qkfgG9HL0U74/ZMSzU1ERMQZnFZY3nTTTWRlZbFmzRpnXVJERKRMuKFmE2r4BwFgtdv4bvfaC8YH3fiU43XaloVknz5YkumJiIhcMacVlsOGDaNx48aMGTOGo0ePOuuyIiIipZ7JaOSBxp0c7e/3rCMjx1JkvF/zPpirNMpt2O0kLptY0imKiIhcEaetCuvt7c2UKVMYM2YMt99+O71796Z58+b4+fld8Lw777zTWSmIiIhctQY3upaPti4lI8dCQlY6Cw9tY1DDawuNNRiNVLzhSU5/NwqA5FXfUKnva5h8AlyZsoiISLE5rbAEOH78OHFxcWRkZLBgwQIWLFhwwXiDwaDCUkREyoUgL1/612/N93vWAfDNzr8Z2KBNkVuPBFx/P3FzXsaWnogtM4XkP6dS8byFfURERK4mTissd+/ezZAhQ8jIyADAbDZTsWJFbTkiIiJy1oNNOjkKy6j4k2w4HU27sDqFxhq9/Ajs9jAJv34AQOLSCQT1ehyDUT9XRUTk6uO0wnLChAmkp6dTs2ZNxo4dS7t27TAanfYIp4iISKkXXjGM66rW5++TB/Dz8ORQclyRhSVAUM/HSFg8DmxWLLEHSdu6CP/Wd7guYRERkWJyWmG5ZcsWDAYD48ePp1mzZs66rIiISJnyRIvu3FCzCQMbXkuAp/cFY82VauHfpi+pG34CIDHycxWWIiJyVXLakGJGRgY+Pj4qKkVERC7g+moNGB5x/UWLyjxBPR9zvE7/ZynZp/aVVGoiIiKXzWmFZe3atcnJycFqtTrrkiIiIuWeT3gXPKs1dbSTVnzlxmxEREQK57TC8s477yQ7O5vIyEhnXVJERKTcMxgMBPZ41NFO+nMKtuwMN2YkIiJSkNMKyyFDhtChQwdeeeUVtmzZ4qzLioiIlFlpliym7VrDyD9+xG63FxkX0Ok+DF65+0Lb0hJIWTfTVSmKiIgUi9MW7/n8889p2bIlO3fu5J577qFNmzY0b94cPz+/C543atQoZ6UgIiJSasRnpnH9nA9Izs4E4MHTnYpcIdbkG0hAx3sd02ATI78gsPMDLspURETk4pxWWE6cONGxybPdbmfjxo1s2rTpouepsBQRkfIo2NuPFpVq8NfJ/QB8s/PvC2890uNRR2GZdWgDmYc24l33WlekKiIiclFOKyzbtm3rrEuJiIiUCw826egoLH+LjuJEaiLV/IMKjfWqdQ3eDTqRuX81kDtqWeWh/7kqVRERkQtyWmH53XffOetSIiIi5UKvmk2o6V+Ro6kJWO02pu1ey+hr+xQZH9TjUU6dLSxT1s0gdPAHmPwquipdERGRIjlt8R4RERG5NCajkQeadHS0p+/dQGaOpch4/7YDMFUIAcCenUHyX9+WeI4iIiLFocJSRETEjQY1vBZvkxmA+Kw0Fh3eUWSs0exFQOdhjnZi5OfYbbYSz1FERORiVFiKiIi4UZCXL3fWu8bR/nb32gvHd38Ezi6WZ4nZR/ou7R8tIiLup8JSRETEzc6fDrs59gg74o4XGWsOrYtfi5sc7aTIz0s0NxERkeJw2uI9V4PffvuN1atXExUVxenTp0lMTMRsNlOnTh26du3K0KFDqVix8EUO0tLS+Oqrr1iyZAknTpzA19eXa665hmHDhtG+fXsXvxMRESlPmlWqTpvQWmyKPQLAtN1r+PD6AUXGB3Z/lLRtvwKQuuVnLPHHMAfXcEmuIiIihSlTI5ZffPEFs2bNYt++fXh6ehIeHk5QUBA7d+7k888/55ZbbmH37t0FzouPj6d///588cUXHD9+nPr16+Pl5cWKFSsYOnQoP/zwgxvejYiIlCf3nzdqufjIzgsu4uPXog8eIXVyGzYrSSu17YiIiLhXmSos7733Xr7//ns2b95MZGQkc+bM4Y8//mDhwoU0atSIM2fO8OyzzxY476WXXuLQoUNERESwbNky5s2bx4oVK3jjjTew2+289dZb7Nq1yw3vSEREyotb6zSnTWgtxrS9mT/7PYu3h7nIWIPRRFD3EY520sr/Yb9AISoiIlLSylRhOXDgQNq2bYvZnP+HcXh4OG+99RYA+/fv58CBA46+nTt3EhkZidFoZPz48YSFhQFgMBgYNGgQd9xxB1arlUmTJrnujYiISLnjZfJgwa2PMaJZFyp6+100PqDzgxg8PAGwJp4kdcuCkk5RRESkSGWqsLyQevXqOV5nZGQ4Xi9ZsgSADh06ULt27QLnDRo0CICVK1eSnp5ewlmKiIgUj0dAKP5tzz2Hmbhci/iIiIj7lJvCctOmTQD4+vpSt25dx/GtW7cCcO211xZ6XosWLfD09CQrK0vTYUVE5KoS1GOk43XG7hVkn9rrxmxERKQ8K1Orwv6bzWYjNjaWv//+mw8//BCA5557Dj+/c1OMDh8+DECtWrUKvYbZbKZq1apER0dz6NAh2rRpU2jcjBkzmDVrVrHyOn8qroiISGEycrKZf3AbXao1pLp/UKEx3g064lmjGdnH/gEgacX/CB38vguzFBERyXVZheXo0aOdcnODwcDbb7/tlGudb+rUqbzzzjv5jrVo0YJ3332XLl265DuelJQEQGBgYJHXy+tLTk4uMiY2NpaoqKjLTVlERMThq3/+5JNtkSRlZ/B4826MvrZPoXEGg4HArg8T+8NTACT/PY1K/cdiNHu5Ml0REZHLKyznzZuHwWDAbrdf1k3zzi2pwjIsLIzWrVtjtVo5ceIEcXFx7Nq1iwULFtCyZUsCAgIcsVlZWQAFFvw5n6dn7uIImZmZRcaEhoYSERFRrPwOHDhwwWuJiEj5ZjBAUnbuegDT927g6ZY9i1wlNqDTvcTNegG7JRNrShxpWxZQod1AV6YrIiJyeYXlnXfeicFgcHYuTnPTTTdx0003Odq7d+9m7NixLFq0iAMHDjBnzhxMJhMAXl5eZGRkYLEUvUx7dnY2AN7e3kXGDB48mMGDBxcrv379+ml0U0REinRXgza8t+l3Mq0W4rPSWHR4BwMatC401uRXEf+2A0hZ/T2QOx1WhaWIiLjaZRWW7777rrPzKFGNGzfmyy+/pFevXuzatYtffvmF22+/HYCAgAAyMjIcU2ILk9d3/kiniIhISQny8uXOetcwY99GAL7dvbbIwhIgqNvDjsIyfedysk8fwLNyfZfkKiIiAuVoVVh/f3/atWsHkG+0sE6dOgBER0cXep7FYuHEiRP5YkVEREra0MYdHa83xx5hR9zxImO9G16HZ7UmjnbSyq9LNDcREZF/KzeFJUBOTg4AVqvVcaxly5bAue1I/m379u1YLBa8vLxo0qRJoTEiIiLO1jykOq1Dz61YPnX3miJjcxfxGe5oJ/85BXtOdonmJyIicr4SKSx37tzJe++9x5AhQ7jlllu45ZZbGDJkCO+//z47d+4siVteVGJiIuvXrwfIVyD27t0bgHXr1hU6ajlz5kwAunTpkm+bEhERkZI2tMm5Ucv5B7eSmJVeZGzAdUMweOQuNmdNPk3qlp9LPD8REZE8Ti0s09PTefbZZ+nfvz9Tp05lw4YNHDhwgAMHDrBhwwamTJlC//79efbZZ0lPL/qH4+VYv349kyZN4tixYwX6oqKieOihh0hJSSEsLIw+fc4t2x4REUH37t2xWq08/fTTnD59GgC73c7MmTNZsGABRqORkSNHFriuiIhISbqldjOCvXI/1Myy5jBrX+GzawBM/pXwv7a/o5208n8lnp+IiEiey1q8pzA2m43HHnuMdevWYbfbCQ0NpUOHDlSpUgWAU6dOsW7dOk6fPs2vv/5KfHw833zzjdNWl01OTuaTTz7hk08+ITQ0lMqVK2MymTh58iSxsbFA7jYkX375ZYGRx7fffpu7776bqKgoevbsSYMGDUhISODkyZMYDAb++9//FnsrEREREWfx9jBzd6O2fLZjBQDTdq9leMR1GA2Ffy4c2HU4KWunA5AetRRL7CHMoXVdlK2IiJRnTiss58+fz9q1a/Hw8ODFF1/knnvuwWjM/4PPZrMxffp03nnnHdauXcuCBQu48847nXL/Vq1aMXr0aNatW8f+/fs5fPgw2dnZBAQE0L59e3r06MGAAQPw9/cvcG5wcDBz5sxh8uTJLF68mP379+Pr60uXLl146KGH6NChg1NyFBERuVRDGrdn0o6V2LETnXKGlcf30b1GeKGxPo27Yg5riCVmH9jtJK36hpD+Y12csYiIlEcGu91ud8aFHnjgAdatW8fo0aO5//77Lxj77bff8vbbb9OhQwemTp3qjNuXKnn7WEZERDB37lx3pyMiIle5B5dNIyr+BEPCO3BPeFsqeRf8kDRP/G8fETfzPwCYgqpS76PDGExO+xxZRESkUE57xnL37t2YTCYGDrz4pswDBw7Ew8ODXbt2Oev2IiIiZdaH1/dn9YD/8MQ13S9YVAIEXHc/mMwAWBNPkrbtF1ekKCIi5ZzTCsu0tDT8/Pzw9va+aKy3tzd+fn5OX8BHRESkLKrk7Y+H0VSsWI+AUPzb3OloJ62YXEJZiYiInOO0wrJixYqkpKRw5syZi8aeOXOG5ORkgoKCnHV7EREROSuo28OO12k7lmA5c8SN2YiISHngtMKyZcuW2O12JkyYcNHYTz/9FLvdTuvWrZ11exERkXIjy5rDkZT4Ivt9GnfHHFovt2G3kbRqiosyExGR8sppheW9997r2Pvx+eefJzo6ukBMdHQ0zz33HDNnzsRgMHDvvfc66/YiIiJlXkx6Mu9sXEzbme8wauWMIuMMRiOBXYc72sl/foPdmuOKFEVEpJxy2jJx7du3Z+jQoUybNo1FixaxaNEiqlatSuXKlQGIiYnh1KlTjvgHHniAdu3aOev2IiIiZd7p9BTHnpbxsWnsiDtO85DqhcYGXD+UuHmvgDWHnPhjpO1YjH/LW12XrIiIlCtOG7EEGD16NC+//DIBAQHY7XZOnDjB1q1b2bp1KydPnsRutxMYGMiYMWN44YUXnHlrERGRMq95SHVah9ZytKfuXlNkrEdQFfxb3e5oJ638ukRzExGR8s3pG1vdd9993HXXXfz999/8888/jsV8KlWqRLNmzbjuuuvw8vJy9m1FRETKhaFNOrI5NncxnvkHtzKm7c0EefkWGhvY5SFSN+bul5y27RdyEk/iEVTVZbmKiEj5USI7Jnt5edGjRw969OhREpcXEREpt26t05zX1y0iPiuNLGsOs/Zt4pFmnQuN9W12Ax7BNcmJPwo2K8l/f0fwLf9xccYiIlIeOHUqrIiIiJQsL5MHdzdq62hP270Wm91WaKzBaCKg8wOOdtKqb7Db7SWdooiIlEMqLEVEREqZIY3bYzQYAIhOOcPK4/uKjA28/gE4G2uJ2UfG3j9dkaKIiJQzJTIV1mq1cvjwYZKTk8nJufDy5m3btr1gv4iIiORXw78ivWo05vejuwD4dvdautcILzTWHFoH34hepP+zFMhdxMc3vIvLchURkfLBqYXlqVOnGDduHEuXLiUzM/Oi8QaDgZ07dzozBRERkXLh/iYdHYXlsqO7OZoST80KwYXGBnYZ5igsUzf8hPXeTzD5BbkqVRERKQecNhX26NGjDBgwgJ9//pmMjAzsdvtFv2y2wp8JERERkQvrUq0BdSpUAsCOne/2rCsy1q/VHRj9z8ZaMklZN90lOYqISPnhtBHLcePGERcXR3BwMM8++yzXX389ISEhmEwmZ91CREREzjIajAxt0oHX1/9CmE8FQn38i441exFw3RASl3wMQNLKbwjqMdJFmYqISHngtMJy9erVGAwGxo0bR4cOHZx1WRERESnCXQ3aUMU3kD61IzAbL/xBbmCXYY7CMit6M5nRW/Cu3coFWYqISHngtKmw2dnZeHt7q6gUERFxkSAvX26r2+KiRSWAV/UIvOuf+xmdtOqbkkxNRETKGacVljVq1NDeWCIiIlexwC7DHK9TVv+ALTvDjdmIiEhZ4rTC8qabbiIrK4s1a9Y465IiIiJyiS70IW+FdgMxePkBYMtIInXjHFelJSIiZZzTCsthw4bRuHFjxowZw9GjR511WRERESmGk2lJfLRlKdfP+ZDErPRCY4w+FajQfpCjnbRqiqvSExGRMs5pi/d4e3szZcoUxowZw+23307v3r1p3rw5fn5+FzzvzjvvdFYKIiIi5ZLVZuPWRZ8Rk54MwKx9m3ikWedCYwO7PETy2ecrM3avIPvUPjyrNHRZriIiUjY5rbAEOH78OHFxcWRkZLBgwQIWLFhwwXiDwaDCUkRE5AqZjEbuatCaidtXADBt91qGR1yH0VBwYpJ3/fZ4VmtK9omdACT9OYXQu952ZboiIlIGOW0q7O7duxkyZAhbt24FwGw2U7lyZapWrVrkV5UqVZx1exERkXLtvvD2GA0GAKJTzrDy+L5C4wwGA4FdH3K0k/+aht2a45IcRUSk7HLaiOWECRNIT0+nZs2ajB07lnbt2mE0Oq1uFRERkQuo4V+RXjUa8/vRXQB8u3st3WuEFxob0Ok+Yme9CFYL1qRTpG3/Ff9Wt7syXRERKWOcVvlt2bIFg8HA+PHj6dChg4pKERERFxvapKPj9bKjuzmaEl9onKlCCP6t73C0k1Z+XeK5iYhI2ea06i8jIwMfHx+aNWvmrEuKiIjIJehcrQF1KlQCwI6d7/asKzL2/Omwadt/IyfhRInnJyIiZZfTCsvatWuTk5OD1Wp11iVFRETkEhgNRoY26eBoT9+7gcwcS6Gxvk174VGpdm7DZiX5729dkaKIiJRRTiss77zzTrKzs4mMjHTWJUVEROQS3dWgDd4mMwAJWeksOryj0DiD0Uhg5wcc7aRV32C32VyRooiIlEFOKyyHDBlChw4deOWVV9iyZYuzLisiIiKXIMjLlzvrXeNoT9u9psjYgM4PwNmVZC2nD5CxZ1VJpyciImWU01aF/fzzz2nZsiU7d+7knnvuoU2bNjRv3hw/P78Lnjdq1ChnpSAiIiLA0MYdmbFvIwDRyfGcTk+hsm+FAnHmSrXwbXYj6TuWAJC06mt8m3RzZaoiIlJGGOx2u90ZF2rcuDGGs5965l0yr30hu3btcsbtS5V+/foRFRVFREQEc+fOdXc6IiJSBr24eh7XVq7NrXWa4+1hLjIuZcNPnPxsEAAGszf1Pj6Gya+iq9IUEZEywmkjlm3btnXWpUREROQKvdupb7Hi/FvdjqlCCNaUOOyWTFLWTCeo12MlnJ2IiJQ1Tissv/vuO2ddSkRERFzE4OFJwHX3k7B4HJA7HVaFpYiIXCqnLd5zOVJSUtx5exEREQECugxzvM46spXMw5vdmI2IiJRGTissP/7440uKT0lJ4cEHH3TW7UVERKQIZzJT+XRbJH+e2Fdov1e1Jng36ORoJ6362lWpiYhIGeG0wvKLL75g+vTpxYpNS0vjoYceIioqylm3FxERkUJ8u3st7Wa9y/ubf2fSjpVFxgV2PTdqmbLmR2xZ6a5IT0REyginFZYmk4k333yTpUuXXjAuLS2N4cOHs337dkJDQ511exERESlEeFAYWdYcAP48sZ+9iTGFxlVoexcGb38AbBnJpG6c47IcRUSk9HNaYfnmm29itVp57rnn2LhxY6Ex6enpPPLII2zZsoWQkBCmTp3qrNuLiIhIIdqF1SEiuKqjPWXn6kLjjN7+BLQf7GgnrfqmxHMTEZGyw2mFZd++fXnmmWfIysri8ccfZ9++/M9xZGRkMGLECDZt2kSlSpWYNm0a9erVc9btRUREpBAGg4EHm5x7fvKnA5tJLGKaa0DXhxyvM/asIvvU3hLPT0REyganrgr7yCOPcN9995GUlMTw4cM5efIkAJmZmTz66KNs2LCB4OBgpkyZQv369Z15axERESnCHfVaUtHLF4CMHAsz9xU+s8i7bls8azRztJNWTXFJfiIiUvo5fbuRl19+mT59+hATE8NDDz1ETEwMI0eOZN26dQQFBfHNN9/QqFEjZ99WREREiuDjYebe8HaO9tRda7DabAXiDAYDgV3OjVom/zUNe47FJTmKiEjpViL7WH7wwQe0a9eOgwcP0rt3b9asWUNgYCBTpkyhcePGJXFLERERuYD7wztgMuT+2D+amsDyY7sLjQvodC8GD08ArMkxpG37xWU5iohI6VUihaXZbGbSpEk0adKEzMxMAgIC+Oabb2jSpElJ3E5EREQuopp/EH1qRzja3xSxiI/JvxL+re90tLWIj4iIFIfH5Zw0ceLEYsU1b96cXbt20aZNG/744w/++OOPAjGjRo26nBRERETkEg1r0olfDu8A4K+T+9mTEEN4xbACcQFdHyJl/SwA0rb/hiXhOOaK1V2aq4iIlC6XXVgaDIZix69YsYIVK1YU2qfCUkRExDXyth6Jis9dXO+HPet4o8PtBeJ8m/TAI6QOOXGHwW4j+c9pVLr9vy7OVkRESpPLKizbtm3r7DxERESkhOVtPfLNrtUMa9KJO+q1LDzOaCSw84OcmfcqAMl/fkPwrS9iMJbIEzQiIlIGXFZh+d133zk7DxEREXGBuxq0YVDDay868yig8wOcmf862G1YYg+RvnM5fs1ucFGWIiJS2uijRxERkXLEZDQW63EWc3AN/Frc5GgnrfxfSaYlIiKlnApLERERKVRgt4cdr1M3LyAn+bQbsxERkauZCksREZFyLCErnXkHthba59fiJkxB1XIbVgvJf33rusRERKRUUWEpIiJSDmXkWHj+7zm0nfkOT6yawa74UwViDCYPArsMc7STVv4Pu93uyjRFRKSUUGEpIiJSDnmbPNgRd5xMqwWAyVF/FhoX2GUYnH0m0xKzj4zdK12Wo4iIlB4qLEVERMohg8HAw806O9rzDm4lJj25QJw5pDa+EedWg01aOdkl+YmISOlSZgpLu93O5s2b+fDDD7n77rtp3749ERERdOjQgWHDhrFw4cILTt9JS0tj/Pjx9OnThxYtWtChQwdGjBjBunXrXPguREREXOe2Os2p4hsAgMVmZdquNYXG5VvEZ+NcrKlnXJKfiIiUHmWmsFy7di133303kydPZvPmzVSoUIHw8HDsdjt///03zz//PI8++ijZ2dkFzo2Pj6d///588cUXHD9+nPr16+Pl5cWKFSsYOnQoP/zwgxvekYiISMnyNHnwYJNOjva3e9aRkVPw56R/y9swBYQBYM/JJvnv712Wo4iIlA5lprC02+3UqFGDl156idWrV7Ns2TLmzp3LunXreO+99/D09GTFihV88sknBc596aWXOHToEBERESxbtox58+axYsUK3njjDex2O2+99Ra7du1yw7sSEREpWfeGt8PXwxOAxKx0Zu/fXCDG4GEmoPMDjnbSyslaxEdERPK57MJyzZo12Gw2Z+ZyRVq0aMHixYu5//77qVSpUr6+O++8k8cffxyAn376KV/eO3fuJDIyEqPRyPjx4wkLy/1E1mAwMGjQIO644w6sViuTJk1y3ZsRERFxkSAvXwY1vNbRnhz1FzZ7wZ/vgV0fcrzOPrGLzP2rXZKfiIiUDpddWD744IN07NiR//znPyxevJj09HRn5nXJ/P39MZvNRfZ36dIFgMTEROLj4x3HlyxZAkCHDh2oXbt2gfMGDRoEwMqVK93+HkVERErC8IjrMJC78uuh5DiWH91dIMazcn18m/Z0tJNWaBEfERE557ILy/DwcJKSkli4cCFPP/20Y7GbmTNnEhsb68wcnSIzM9Px2tvb2/F669atAFx77bX/PgXIHQn19PQkKytL02FFRKRMql2hEn1qN3W0vyxq65HzRi1TNvyENS2xpFMTEZFS4rILywULFhAZGclLL71Eu3btsNlsrFy5ktdee42uXbsycOBAvvrqKw4cOODMfC/bL7/8AkDjxo3x9/d3HD98+DAAtWrVKvQ8s9lM1apVATh06FDJJikiIuImIyK6OF6vPXWI7XHHCsT4tb4To3/u4yb27AxS1vzosvxEROTq5nElJ1erVo0hQ4YwZMgQkpOTWbFiBcuWLeOvv/5i+/bt7Nixg/Hjx1OrVi169uxJjx49aNOmDYazGy27yj///MOMGTMAeOSRR/L1JSUlARAYGFjk+Xl9yckF9/fKM2PGDGbNmlWsfK6WYltERCRPm8q1aBVak9TsLB5udj0Ng8IKxBjNXgReP5SExeMASFw5mcCeI13+c11ERK4+V1RYni8gIIDbb7+d22+/nezsbNauXcuyZcv4448/iI6O5ptvvmHKlClUrFiR7t2706NHD66//nq8vLyclUKh4uLieOKJJ8jJyeGGG27glltuydeflZUFcMHnMz09c1fLO3867b/FxsYSFRXlhIxFRERcz2Aw8E3P+6nk7YfRUPSEpsAuDzkKy+yj28k8tAGfeu1claaIiFylnFZYns/T05MuXbo4FszZvn07y5YtY/ny5Rw4cIA5c+Ywd+5cvL296dSpEz179qRnz54XHDW8HCkpKTz88MOcOHGCiIgI3n333QIxXl5eZGRkYLFYirxO3t6X5z+b+W+hoaFEREQUK68DBw5csEgVERFxh1CfCheN8azWGJ/wLmTsWQXkLuKjwlJEREqksPy3Fi1a0KJFC5555hmio6NZvnw5y5YtY+vWrSxfvpzIyEhOnDjBqFGjnHbPtLQ0hg8fzs6dO2nYsCFff/11vmcr8wQEBJCRkeGYEluYvL6AgIAiYwYPHszgwYOLlVu/fv00uikiIqVWYNeHHIVlyrqZhN79ESafon9GiohI2XfZi/dcrtq1azNs2DB+/PFH/vrrL9588026d++Oj4+P0+6RkZHBiBEj2Lp1K3Xq1HFMwS1MnTp1AIiOji6032KxcOLEiXyxIiIi5UFCVjpbY48WOO5/bX+Mfrk/V+1ZaaSs+cHVqYmIyFXG5YXl+YKDgxkwYACTJk3ioYceuvgJxZCVlcXIkSPZsGED1atXZ+rUqYSGhhYZ37JlSwA2bdpUaP/27duxWCx4eXnRpEkTp+QoIiJyNTuVnsxLaxbQbtY7jFzxIzk2a75+o6cPAdfd72gnRn6J3W53dZoiInIVcWth6WwWi4UnnniCNWvWEBYWxrRp0xxbhRSld+/eAKxbt67QUcuZM2cC0KVLF/z8/JyftIiIyFXGZrPx/Z51ZORYOJqawOLogo9vBHUf4XidfWwHmfv+dmWKIiJylSkzhaXVauXZZ59l5cqVhIaGMm3aNGrWrHnR8yIiIujevTtWq5Wnn36a06dPA2C325k5cyYLFizAaDQycuTIkn4LIiIiV4Vq/kHcWre5o/35P6sKjEh6Vg3Hp0kPRzsx8guX5SciIlcflyze4wq//fYbS5YsAXJXpf3vf/9bZOyYMWNo2rSpo/32229z9913ExUVRc+ePWnQoAEJCQmcPHkSg8HAf//732Kv+CoiIlIWjIjozIKD2wDYFneMv07up3O1hvligno8SsauSABSN84hJ3kcHgGVXZ6riIi4X5kpLPO2BAE4fvw4x48fLzI2JSUlXzs4OJg5c+YwefJkFi9ezP79+/H19aVLly489NBDdOjQocTyFhERuRq1CKlB12oNWXliHwATt68oUFj6t7odU1BVrIknsedkk7xqCsG3vuCOdEVExM0Mdj1t73J5241EREQwd+5cd6cjIiJSqNUnDzBw8WRHe+Gtj9E6tFa+mLh5rxG/YCwAHiF1qPv+XgxGk0vzFBER9yszz1iKiIiIc3WsUo825xWSn21fUSAmsOtwOFtI5sQdJm3HElelJyIiV5ESKSyzs7M5ePAgBw4cID09vSRuISIiIiXMYDAwqkU3R3vJkZ3sSYjJF2MOroF/q9sc7aTIz12VnoiIXEWc+oxldHQ077//PitXrsRqPbfnVZ06dejWrRsDBgygfv36zryliIiIlKCeNRvTuGIVdiecAuCzHSv4tMugfDGB3R8lddN8ANK2/4Yl9jDm0DquTVRERNzKaSOWhw8f5q677iIyMpKcnBzsdrvj69ChQ0ydOpXbbruNl19+mdTUVGfdVkREREqQ0WDk8ebdHO0FB7dxJCU+X4xv056YwxrkNux2klZORkREyhenFZbjx48nOTkZk8nEsGHD+O6775g3bx5fffUVTz75JE2bNsVmszFnzhzuvvtuYmNjnXVrERERKUG31W1O7QrB1KlQiXc63UmYb0C+foPRSFD3Rx3tpJVfY7NkuTpNERFxI6etCtuxY0cSExN59913ueOOOwqNWbt2LS+//DLHjh2jefPmzJw5E6Ox/K0fpFVhRUSktDmSEk91vyBMRfzctqbGc/DpmtgtmQBUefR7Ajrc7coURUTEjZxW1SUnJ+Pp6cltt91WZEyHDh2YNWsWNWvW5J9//mH27NnOur2IiIiUoFoVgossKgFM/sFUaDfQ0U6K/NIVaYmIyFXCaYWlt7c3np6eFx2BDA4O5qWXXsJutzNv3jxn3V5ERETcLLDnSMfrjL1/knXsHzdmIyIiruS0wrJmzZqkpqZy5MiRi8Z27twZT09P9u3b56zbi4iIiAslZKax9tTBfMe867bFq3ZrRzsx8gtXpyUiIm7itMKyb9++2O12xo0bd9FYk8mEt7c3BoPBWbcXERERF4jPTOP19YtoP/s9Hon8gYycbEefwWAgqMcIRztl9ffYMrUSvIhIeeC0wvLee++lUaNGLFmyhNdeew2LxVJk7IEDB0hOTqZBgwbOur2IiIi4yPd71pGek018VhrT927I11ehw90YfQIBsGWmkLzmB3ekKCIiLua0wtLDw4NPPvmEgIAAZs6cyc0338x3333H8ePH88Xt37+fZ555BoAHH3zQWbcXERERFwj29uPeRu0c7S/+WUW2NcfRNnr5EXD9/Y524vJJOGkBehERuYo5da+PunXrMn36dBo0aMDRo0d5++236dWrFx06dOC2226jR48e3HbbbZw8eZK3336b3r17O/P2IiIi4gKPNOuC2WgC4ERaErP3b87Xf/6eltnH/iFj1x8uzU9ERFzP6ZtI1qtXj3nz5vH666/TuHFj7HY7iYmJ7Nu3jxMnTmC320lJSWH8+PE8+uijfPLJJyxdupRjx445OxUREREpAdX8ArmrQRtH+5Nty8k6b9TSs1pjfJvd6GgnLP3UpfmJiIjrGewlPD/l9OnTbN68maioKHbu3ElUVBSJiYnnEjhvAZ8KFSrQpEkTpk2bVpIpuV2/fv2IiooiIiKCuXPnujsdERGRS3YsNYHOcz7EYrMC8FaHOxjapKOjP237bxwfd2tuw2Cgznt78Kxc3x2pioiIC3iU9A0qV65Mnz596NOnj+PYiRMn2LlzJ//88w87d+5k586dxMXFkZyczPr160s6JREREblCNfwrck+jtkzbvRaAT7f/wcCG1+LjYQbAt1lvzFXCsZzaA3Y7iUsnUvne8e5MWURESlCJF5aFqVatGtWqVaNXr16OYzExMY4RTREREbn6jWrRnRn7NpJlzSEmPZkf9qxjeMT1ABiMRire8ASnvxsFQPKfU6jU73VMPgHuTFlEREqI05+xvFxhYWF0796dUaNGuTsVERERKYaqfoHcF97e0f5sx4p8+1oGXDcEo28QcHbrkT+nujZBERFxmaumsBQREZHS5/Hm3fA25U5/jc1IZda+TY4+o7c/gV0ecrQTl03EfvaZTBERKVtUWIqIiMhlq+xbgaFNOlLDP4gPr+vPPeHt8vUH9XocDLm/blhOHyBt2y/uSFNEREqYCksRERG5Is+07Mmqfs8xuFFbx/6WecwhtfFvc6ejnfD7BBdnJyIirqDCUkRERK6In9kLT1PR6wEG3fCk43XGrkiyjm53RVoiIuJCKixFRESkRPk0uh6v2q0d7YSlGrUUESlrVFiKiIiIU8VnpvHepiUkZKUDYDAYqHjjE47+lNU/kJMc6670RESkBKiwFBEREaeZtGMlHWe/x4Ttf/DVP386jvu3G4QpIAwAe04WSSsmuytFEREpASosRURExGks1hzSzu5l+fXOv4nPTAPAaPYiqMejjrjEyEnYz9vzUkRESjcVliIiIuI0D0VcT0UvXwDSc7L5bMdKR19g9xEYPDwBsCaeJGXDT27JUUREnE+FpYiIiDiNv9mLkc27OtpTd63mWGoCAB6BYVRoP9jRl/D7p9jtdpfnKCIizqfCUkRERJzqgcYdCfMNACDLmsN7m5Y4+oJuPLf1SNahDWTuX+Py/ERExPlUWIqIiIhT+Zo9+U/rGx3teQe3sjX2KADetVvhE97F0Rf/6wcuz09ERJxPhaWIiIg43YD6rWlSsYqjPXbDr45prxVvetZxPG3LQrKOR7k8PxERcS4VliIiIuJ0JqORV9rd4miviznE70d2AuB3zS141mjm6EvQqKWISKmnwlJERERKROdqDelePdzRfmvjb1hsVgwGA8E3/8dxPHntdCxx0e5IUUREnESFpYiIiJSYl9vejNFgAMAOHE9NBKBC+0F4hNTJDbLmkLBkvFvyExER51BhKSIiIiUmvGIYI5t15Y32txHZ92nqBFQCwGDyILjPuWctk1b+D2tKnLvSFBGRK6TCUkRERErU6Gv7MKzpdZiNpnzHAzo/gKlCKAD27AwSlk5wR3oiIuIEKixFRETELYxevgTd+JSjnbj8M2wZKW7MSERELpcKSxEREXG5hKx0AIJ6jMToXQEAW1oCSSv/5860RETkMqmwFBEREZdJyc7k3U2LaTvzHTbHHsHkF0Rg9xGO/vjF47BZstyYoYiIXA4VliIiIuIyI/74gYnbV5BptfDmhl+x2+1UvPEpDB6eAFgTT5Cy+ns3ZykiIpdKhaWIiIi4zOPNuzper485zKLDO/CoWI2A6+53HI//7UPsNqs70hMRkcukwlJERERc5rpqDehZo7Gj/dq6n0nJzqTizc+DIffXEsupvaRumu+mDEVE5HKosBQRERGXeq39rXiZPACIyUjhg82/4xnWAP+2/R0x8b++j91ud1eKIiJyiVRYioiIiEvVDQhhVItujvbU3WvYEXec4Jv/4ziWdWgjGbsi3ZCdiIhcDhWWIiIi4nKPNe9GvYAQAGx2Oy+umYe5Vkt8m93giDnz87vuSk9ERC6RCksRERFxOS+TB293vNPR3hZ3jB/2rif4lhccxzJ2RZK+e6UbshMRkUulwlJERETc4vpqDbij3jWO9rubFpNauw0+jTo7jp2Z+6qetRQRKQVUWIqIiIjbvNr2VgI8vQFIzs5k1v5NVOr/hqM/Y++fpEctdVd6IiJSTCosRURExG0q+1bgP617E+Ltz6ddBvF48274hnfBN6KXIyZuzisatRQRucqpsBQRERG3GhLenpX9nqVf/VYYDAYAKvU7N2qZdWgDaVsWuis9EREpBhWWIiIi4lYmo5FAL598x3zqt8ev5a2OdtzcV7HbbK5OTUREikmFpYiIiFyVAu98xfE6+9gOUjfMdmM2IiJyISosRURE5KpyJjOVZ/6czYg9W/FvO8BxPG7e69itOW7MTEREiuLh7gScJTY2lr///pt//vmHHTt2sGvXLrKysmjXrh3ffffdBc+1WCxMmzaNhQsXcuTIEcxmM40bN2bIkCHceOONLnoHIiIicjQlnj4LJ5CUnQHA39f05ZqNc8Fuw3JqD8lrfiDw+qFuzlJERP6tzBSWv/zyC++8884ln5eVlcWDDz7Ipk2bMJlMNGjQgIyMDNavX8/69et5+OGHee6550ogYxEREfm3Gv4VubZybZYf2w3Afw9F8WvbAdjXzwIgfsFYAjrcjcHD051piojIv5SZqbD+/v506tSJESNGMHHiRB577LFinffBBx+wadMmatSowaJFi1i4cCFLly5l0qRJeHp6MnnyZCIjI0s4exEREQEwGAx8cF1/Knr5ApCRY+Gd4MZgyv0s3BJ7iKQ/p7gzRRERKUSZKSwHDBjAlClTeOaZZ7jhhhuoVKnSRc+Ji4tjxowZALz11lvUq1fP0dezZ0+GDx8OwMSJE0smaRERESmgsm8F3unU19H+PSODo017O9rxC9/Clp3pjtRERKQIZaawvByRkZFYLBbq1KlDhw4dCvQPHjwYgKioKI4cOeLq9ERERMqtW+s0p1/9Vo72aP/a2E25019zEo6TtOIrd6UmIiKFKNeF5datWwFo06ZNof1hYWHUqFEjX6yIiIi4xtj2t1PFNwCAE55+rKjd3tEXv+gdbFlp7kpNRET+pVwXlocPHwagVq1aRcbk9R06dMgVKYmIiMhZgV4+jLv+Lkd7Ylgzcjy8ALAmnyZh8Xh3pSYiIv9SZlaFvRxJSUkABAYGFhmT15ecnHzBa82YMYNZs2YV674HDhwoZoYiIiLlW5fqDXmgSUem7lpDgqc/s6u25O6j6wCI/+U9Ajo/gDm4hpuzFBGRcl1YZmVlAWA2m4uM8fTMfZ4jM/PCiwTExsYSFRXlvOREREQEgJeuvYlVx/dxMDmOH2u1p3/cHjwzErFnpxM3ezRVR1x4v2oRESl55bqw9PLKnU5jsViKjMnOzgbA29v7gtcKDQ0lIiKiWPc9cODARQtVERERyeXj4cnHXQbyxMoZvH9df2o2iiBmyggAUtb8SFCPkfg07OTmLEVEyrdyXVgGBOQuCJA3JbYweX15sUUZPHiwYxXZi+nXr59GN0VERC5B69BarOj3LGajCXtYHRIjvyAregsAp3/4P2q9shaDsVwvHSEi4lbl+l/gOnXqABAdHV1kTN42I3mxIiIi4h5mowkAg9FE6D3nFu7JOryJ5L+nuSstERGhnBeWLVu2BGDz5s2F9sfExHDs2LF8sfL/7d15eBRVugbwt3pLZw8xkIWwk7A5gOwoMoTgCIqCgoACDoJGkSsqyIiijojM4Cgo4EUZvMoyOoDsIItAAFFEEMIWEpBAIAkJJGQh6U56rftH6CI7vdLp9Pt7njydOnXq9Nd1ctL9dZ2qIiIicj+/dg/Cv9ftK8bmfT8LptK6L7RHRESu49WJZXx8PJRKJdLT03H48OFq61evXg0A6NixI1q0aHG3wyMiIqJa5JYW4+9NuqJMVn5Wj+nmNeRvmevmqIiIvJdXJ5ZhYWEYPXo0AGDWrFm4ePGitC4xMRFfffUVAGDKlCluiY+IiIhqtiL1MHYWF2J1s15SWcGPC6HP+cONURERea8Gc/Ge7OxsDB8+XFq2XM31+PHj6N27t1T+/PPP44UXXpCWZ8yYgeTkZCQlJWHo0KGIiYmBVquVzq2cOHEiBg0adHdeBBEREVnl1S4D8cvVC1hjMmBIzmmE64oBkwG5q99A09c2uzs8IiKv02COWJpMJhQWFko/Wq0WAGA0GiuVV73Nh1qtxsqVKzF9+nS0adMG6enpKCgoQK9evbBo0SK8+eab7ng5REREVAelTI4v4sYiKKARlrYeIJVrTmyD5vQu9wVGROSlBFEURXcH4W0stxvp1KkTNmzY4O5wiIiIPNavORcxZscyzE/6Fp1vZgEAlJEd0HJOEgSF0s3RERF5jwZzxJKIiIi8T9+I1nirxxB83jYe5ltlhuwUFCZ+4da4iIi8DRNLIiIi8mgv3vsgYu+Nx/bIzlLZtQ3vwVhw1Y1RERF5FyaWRERE5NEEQcD8fiOR2Hk4SuQqAICsrBhpy54Dz/ghIro7mFgSERGRxwtUqTF/8Ev4OiZeKhPO7kHxr9+6MSoiIu/BxJKIiIgahHaNwvHYmHk41qiFVHb929dgLMxxY1RERN6BiSURERE1GA+3vBe9p66DoA4AAJg1Bbi28mVOiSUicjEmlkRERNSgtG7VDY1HzZOWNcc3o/i3NW6MiIio4WNiSURERA1O8IAX4dshTlrOWPEyFvy02o0RERE1bEwsiYiIqMERZDKEP/dvCCo/AICytAgBWz/AN2cPuTkyIqKGiYklERERNUiqJq0RPOJDaXlA7jns2fYJdlw+48aoiIgaJiaWRERE1GA1fugVyNveLy1P/WM33t79NQ7nXHRjVEREDQ8TSyIiImqwBJkMzV74BlCqAQCNDFoknP8R43d/g1+y09wcHRFRw8HEkoiIiBo0VXhbNB75D2k5/noKemSfwV93L8fBq3+4MTIiooaDiSURERE1eCEP/Q/UMQ9IyzPO7UJoyXVM2LMC+7POuzEyIqKGgYklERERNXiCTI6ISf8HQR0AAAgw6fB+8maI+lJM3LMCezNS3RwhEZFnY2JJREREXkEVEYOIiV9Jy201uZh6YS/0ZhMWnUyEWTS7MToiIs/GxJKIiIi8RmCvpxDy0FRp+ZGc05h08zKWPzQBMoEfi4iI7MX/oERERORVGo/+COoKtyAZe3ozfHPOuTEiIiLPx8SSiIiIvIqgUCFyymrIAxuXFxh1yP58FEyaAqlORnE+RFF0U4RERJ6HiSURERF5HWWjpoic/C1wa/qrIfcicpZNgGg2I7UgBw9tXoi3ft0Eg9nk5kiJiDwDE0siIiLySn4d43HPE7OlZc2Jbcjc8iEm7FmOEoMO/zn3G/66ezmKdKVujJKIyDMwsSQiIiKvFTp0Jvy7PCItl26eg77FOdLyT1f/wPAfvsDl4hvuCI+IyGMwsSQiIiKvJchkiEhYCUVYy/IC0YwpSavx7D0RUp0/iq7jsa1LcPRaultiJCLyBEwsiYiIyKvJ/Rsh6n/WQlCoAADm4ly8cPB/8WbMfVKdfJ0Go3cuw4a0JHeFSURUrzGxJCIiIq+nbtkd4c8tlZYNuRfx+K6P8HmvR6CSyQEAerMJU39agzlHfoDeZHRXqERE9RITSyIiIiIAQQ88i7DR/5KWdRkn0X3L37EmfjxCffyl8qXJB/HE9i+RUZzvjjCJiOolJpZEREREt4QOmY5GQ96QlkvP/YSo9TOx5ZEEtAsJl8qvFOdDcetIJhERMbEkIiIiqiRs1DwEPThBWtYkbYV6/dvYOvRljI3tBQD49MGnEOkf7KYIiYjqH4W7AyAiIiKqTwRBQPiEpTCV3IAmaSsA4ObB5ZAHNsZHo+bh2fZ90OmeqGrblRkNUCuUdztcIqJ6gUcsiYiIiKoQ5ApETv4vfGMflMoKtn+M/B3za0wqb5SVIG7jAiw98xNMZvPdDJWIqF5gYklERERUA5nKF1GvboJPsy5SWd6av6Fw39JK9URRxLSD65BRUoA5R7fj8R+W4MyNrLsdLhGRWzGxJCIiIqqF3D8ETadvh7Jxa6ns+oqXcWPzhxBFEQCQrSnCmfyr0vqTeZl4ZOvneP+3rSgx6O56zERE7sDEkoiIiKgOipAINJ2xE/KQ21Ngb2z8O66v+h+IZhOiAkKwe9ireLLNfdJ6syjiq7O/IG7DAuy8nOyOsImI7iomlkRERER3oGrSBs3f+RnKiHZSWVHil8j+39Ew68sQqvbHov6j8d+HJ6FVUJhUJ1tbhOcTV2HinhXIKil0Q+RERHcHE0siIiIiKyjDWqD5rJ+gbt1bKis5thFZnwyGSVMIAHgwKga7h72K17rGQ1XhPpc/ZqQgbuMCLDqZCKPZdLdDJyJyOSaWRERERFaSB4Yh+s3d8O/yiFRWev4gMv75ZxgKyi/Yo1Yo8cZ9D+HHYa+iT0QrqZ7WqMe+zHOQC/z4RUQND/+zEREREdlA5uOPqFc2IOjBCVKZPvMMMuY8AN3VFKmsbUgTfD84AZ/2ewqNfPwAADO7D4YgCHc7ZCIil2NiSURERGQjQaFE+MSvEPrY21KZMT8DGXMfRMnxzbfrCQKeiumOgyPewCcPjEDvCkcwLeYn7caPV85KV5klIvJETCyJiIiI7CAIAsJGzEHjcYuAW0chzZoCXF30JK6tegVmfalUN8THD2Nie1ZrIyU/B5+dSMTEvSvx+A9LsOPyGZjM5rv2GoiInIWJJREREZEDGg2agsiXV0Pw8ZfKivYuwZUP+kKXdbbObT9J+hEiyo9UJuVm4IXE/6D/hvn45uwhaA16l8ZNRORMTCyJiIiIHBTYcyRavH8UPi1u38tSn3kaV2b3QuH+ZbVOc51+3yDER7evVHa5+Abe/W0Leq79J+Yd24kc7U2Xxk5E5AyCyAn9d92TTz6J5ORkdOrUCRs2bHB3OEREROQkZoMOed+/hcIfF1YqD+g5EuETlkLuH1Ljdkm5Gfj3mYP44fJpmKt8NFPK5BjWqgue63g/uoRFuyp0IiKH8IglERERkZPIlD5o8swCRL22BfLAMKm85Og6XH6vG7RnE2vc7r7GzfBF3DP4ZcQMPN/xAfgrVNI6g9mEdWnH8VXyzy6Pn4jIXkwsiYiIiJwsoOujaPFBEnw7DJTKjDcuI/NfD+Hq4pEw5F6qcbtmgaF4v/djODLqLbzT4xFE+gVL60bH9KhWP6ukEHqT0fkvgIjIRpwK6wacCktEROQdRLMJBds/Qd6GdwGzSSoXFD5oNHgaQofOhEwdUOv2BrMJ2y6dxq4ryVgy4GnIhMrHBIb/8AUuFuXhiTZdMbTln9C9SfNqdYiI7gYmlm7AxJKIiMi7lF36Hdf/8yrK0g5XKpeHRKLxU/9AYN9xEGS2JYRpRbn484b5lcoa+wbg4eadMLhFJ9wf0RoqucLh2ImIrMGvtIiIiIhcTN2qB5q98zMiElZCHhIllZsKs5Gz7DlkfPgASi/8alObp29kwadK4phbWoL/nPsN4378Gl1Xf4hXDqzG9vQz0Bh0TnkdRES14RFLN+ARSyIiIu9lLitB/g//QsHO+RANZZXW+bYfgEYPvwb/Lo9adQSzSFeKrZdOYfvlMziUnQajaK6xnkKQYc3gF9A7opVTXgMRUVVMLN2AiSUREREZctORu/ZNlBxdV22dMiIWjf7yKoIeeBYyHz+r2ivQabE3IwU7Lidjf9Z56Cpc1EcuyHDmmfcQqFJX2mbLxZPoGBqJNsGNIQiCYy+IiLwaE0s3YGJJREREFtpzPyFvzUyUXfyt2jpZwD0IiXsJIfEvQxESYX2bBj32ZZ3DzsvJSMxMRUxIODY9OrlSnQKdFp2/mwMRIkJ9/NGtSTP0aNIC3Ro3R9ewZvBTqmppnYioOiaWbsDEkoiIiCoSRRFlF35Fwc4FKDm+Cajy8UxQqOB/3+MI7DUK/l0egUzla3XbRrMJN8o0CPcLqlT+Q/ppvLjv2xq3kQsydAyNRPcm5Ulmp9AotA1pDKVMbvNrIyLvwEuFEREREbmZIAjwjbkfvjH3Q389DYU/LkLRwW8g6jQAANGoR8nRdSg5ug6COgABXR9DYO/R8Lv3L5ApfepsWyGTV0sqAUAE0L5RBFILcqqtM4lmnL6RhdM3sgCUX1Ro1UPPIS66XaV6BrOJySYRAeARS7fgEUsiIiK6E5OmAEX7l6Fg92KYCq/WWEfmG4yAbsMQ0HMk/Nr/uc57YtamUKdFUm4Gfr9+GceuX0FS7hVojPpq9Y6PnoUmfoGVyh7a9BkKdaVoG9IYbYOboG1wY7QNbow2IU0Q7hvI8zaJvAgTywoOHz6Mb775BidPnoRWq0VUVBQGDx6MhIQE+PlZd+K8NZhYEhERkbVEox6a07tQfGQtSpK2QCwrqbmiTA51q57w6zAAvu0HwDfmfsh8/G1+PpPZjHOFOTh2/QqOXb+C5PyrKNSV4ujotyrVKzMa0P4/f6/1SrSBSh+0CgpD88BQNA8MRf+oGPSLamtzPETkGZhY3rJq1SrMnTsXoigiIiICoaGhuHDhAvR6Pdq0aYPvvvsOISEhTnkuJpZERERkD7O+FJqT21F8ZC00J3+AqC+tvbJcCXXrXvBr/2eo2/SGT7MuUIRG23UU0WQ2Q17l9ien87IwZOtiq9v4n84DMLP74EplG9NOYE9GCiL8gxHpF4RI/+DyH79gNPENrPacRFR/8RxLAGfOnME//vEPAMAHH3yAUaNGQRAEXLt2DZMnT0ZycjLeffddLF5s/T9PIiIiImeTqXwR2HMEAnuOgLmsBCUntqHk6DpozybCXFpUubLJgLI/fkHZH7/c3t4/FD7NOsOneRfpURXV8Y7nadaU4HW6JxK/jvwb0m7m4ULhdVwoysWFoutIK8pFbmn1o6rNAkKrlR3LvYzNl07W/FoFAaE+/mjsG4DGvoEI8w3Ap/2eqhSLKIq4dPMGQnx8EaRSQ8HzPYnchoklgCVLlsBsNmP48OEYPXq0VB4eHo4FCxZgyJAh+PHHH5Gamor27du7MVIiIiKicjJ1AIL6jEFQnzEQzSborpyENmU/SlP3ofTcQZjLiqttY9bkozR1P0pT998uFGRQhEZD2bg1lI1blj+GtYSySWsow1pBHtQEQg2JpUyQoVlgKJoFhmJA09hK6wp0WlwsykV6cT4yivNxpTgff7onqlob2ZqiamVSrKKIvLIS5JWVIKUgB4FKn2oJbrFBh/4bPpGWg1RqhKj8EOLjixCf8sdg1e3f+0S0Rpew6EptlBh0MIsi/BUqHiElcoDXJ5YajQYHDx4EAIwaNara+pYtW6JPnz44dOgQdu7cycSSiIiI6h1BJoe6ZTeoW3YDhkyDaDJCdzkJ2tQDKD1/ELorJ2HMz6h5Y9EM440rMN64gtLUGtbLFVAEhUMeFA5FcDjkweFQBEdAHhQOeVATyP0bQeYXArlfCGS3fhr5+KF7kxbo3qRFnXGPiemBe++JQrbmJrI1RcjWFiFbU4SiGqb4hvkGVisr1GkrLd/Ul+GmvgxXajkN9a3ug6sllp8m7cHS5PLPgmq5Ev5KFfwVPuWPSp/yH4VKWp7T+/FK04lFUcT6tOPwkSuhlivKHxVK+MgVUMtvPUrLCqhkCiaw1CB5fWKZkpICvV4PlUqFzp0711ine/fuOHToEE6erHmqBhEREVF9IsgVULfuCXXrnsAjbwAATCX50GWcgu7KSegyTkKXcQr6rGSINVwBthKTEcaCLBgLsqCz9vmVasj8G0HmEwBB5QuZ0heCyheCSn37d6Uvuqh80fXW7zKVLwR/P8gaNYVBpkSR2YybJgOKDAYUGfWQK1TQpuyHIFcAMgUEuQLFxQVoo7kBvQCYBJn0I0KAWQAAASIAEQJEQcA9ZgNMmgIAAiAIEAQZdKVFUJv0ECHAZDbipqEURZbtBKF8WwAQBChlcnzYZ1il12owm/Dawe+t7pvJ9/4Zs3oOqVT29dlf8L+nD0Alk0Mhk996lEEpU0Apk0Epk0N5a51SJscn/UYgxKfyhSX/dWwXykwGyAQZ5IIMckGATCaDDALkggC5THZrnYCYkHAMrHLrmMvFN3D0WjqEW3XkggyyW49yQYCsynLnsGgEqtSV2kgtyEGZ0QBBECAAECBAEG4/AgJkggABAvwUSjQLrDw9utRowDXtTWkbS13h1v4XgNtlAhCk8oWPvHI6ozXoYRTN1eriVjtSbLceq06fFkUR5qr3ka1yWvKtiCqs59WPASaWuHTpEgAgKioKSqWyxjrNmzevVJeIiIjI08gDQuHXYQD8OgyQykSjAYa8dBjyLsFw/SIMuZdu/+RdgllTYNdziYYymAqzYXIwZv9bP5ZJtJlV1isBLLOlwUOfI61K0bO3fqx1fv+/yjMNoTx1giBgh9ksJbB3ojy0GH98Ja+UrfQxmdDNbKyxfk1t5n7/CvKqlD1k1MO6a3IKUMrluCCv/LnXYDahtdFw+3nv8FKuKn0gF24deb31Wkr1ZTDVEUPFNaUyOXRVzu01imYU68sAK/YjAASo1FDJKyeGxfoy6M3W/eXJBAGNqiToJlGsdiS8Ln4KFXwVlfelxqBHmclQyxbVhfr4V0teb5Rpaq1fsWrPZbUcnncDr08si4rK5/YHBwfXWseyzlK3JqtXr8batWutes60tKr/0oiIiIjuPkGhhCoiBqqImBrXmzSFMBZlw1R0Daab12Cs+FiUA2NxHszaQpi1hTBpCwBTzclRgyKaK2dIAOq+9FEVZkPVzaGAbR/KRZO+Whs23VjGBFS9SYwcgE13QTXqqrVh681tzPrKyZMMQO2fyGuKobTalxd+t36sZdJXTyJDbInBUD0G9a0fa5kN1ad+2xRDPeH1iaVOVz6po7ajlQCgUqkq1a1Jbm4ukpOTnRscERERkRvJ/UMg9w8Bojrcsa4oihD1WphuJZpmTQHMOg1EfSnMhlKI+lKI+jLpd7NeW15mKIVZX1rh9zKIhlKIBh1gNkE0GyGajECVR9FsBKo+Wnmkioicz+sTSx+f8u+YDIbaD1fr9fpKdWvSuHFjdOrUyarnTEtLQ1lZmQ1REhEREdVvgiBA8PGHzMcfaNTULTGIoliejJqMAERAFG8/iiJE0VylzHxr+ujtOhDNECsuQwTMZgDi7bq3lqV2Id46kmnl7eGtvo28c9uz/vb1Ntzm3oWvpeL5juV7Xix/vNWXCpkcCqHyhZBKjXoYbvWFVPdWsyIsbZU/ChBwj7rycVajaEZBhWmoVaMWq5QEKNXwV6gqld3Ul0JT4dzlqruoahtRfsHVztPMKimoUB93/L0+8PrE0ppprtZMlx0zZgzGjBlj1XM++eSTPLpJRERE5GSCIADy8gv7kHeyZQpqbWyaEuyiGNo4oY27zeuvddyyZUsAwNWrV2s9annlypVKdYmIiIiIiOg2r08sO3ToAKVSCb1ej1OnTtVY59ixYwCArl273sXIiIiIiIiIPIPXJ5YBAQHo168fANR4Vdf09HQcPnwYADB48OC7GhsREREREZEn8PrEEgBefvllCIKAzZs3Y82aNdKJzdevX8e0adNgNpsxaNAgtG/f3s2REhERERER1T+CaP3loRq05cuXY968eRBFEZGRkWjUqBEuXLgAvV6PVq1a4bvvvkNoaKhTnsty8Z5OnTphw4YNTmmTiIiIiIjIXXjJrFsmTJiAdu3a4euvv8apU6dw48YNREVFYfDgwUhISIC/v623fCUiIiIiIvIOTCwr6Nu3L/r27evuMIiIiIiIiDwKz7EkIiIiIiIihzCxJCIiIiIiIocwsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIiIiIiIocwsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIiIiIiIocwsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIiIiIiIocwsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIiIiIiIocwsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIiIiIiIocwsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIiIiIiIocwsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIiIiIiIocwsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIiIiIiIoco3B2AN2rVqlWlRyIiIiIiIk8miKIoujsIIiIiIiIi8lycCktEREREREQOYWJJREREREREDmFiSURERERERA5hYklEREREREQOYWJJREREREREDmFiSURERERERA5hYklEREREREQOYWJJREREREREDmFiSURERERERA5hYklEREREREQOUbg7ALLe9OnTcenSJXeHQURERERE9USrVq0wf/58d4fBxNKTHDt2DNnZ2e4Og4iIiIiI6on8/Hx3hwCAiaVH0Wq1AAC1Wo02bdq4ORrvlJaWhrKyMvaBG7EP3I994H7sA/djH7gX97/7sQ/cz9IHlhzB3ZhYepDo6GgUFRWhTZs22LBhg7vD8UpPPvkkkpOT2QduxD5wP/aB+7EP3I994F7c/+7HPnA/Sx9ER0e7OxQAvHgPEREREREROYiJJRERERERETmEiSURERERERE5hIklEREREREROYSJJRERERERETmEiSURERERERE5hIklEREREREROYSJJRERERERETmEiSURERERERE5hIklEREREREROUTh7gDIeqNGjUJubi4aN27s7lC8FvvA/dgH7sc+cD/2gfuxD9yL+9/92AfuV9/6QBBFUXR3EEREREREROS5OBWWiIiIiIiIHMLEkoiIiIiIiBzCxJKIiIiIiIgcwsSSiIiIiIiIHMKrwt4lBw4cQEJCAgCgadOmSExMrLGeRqPBv//9b+zatQtXr16Fn58funTpgokTJ6J37952P/+NGzfwxRdfYN++fbh+/TqCgoLQs2dPvPjii+jQoYPd7XqSO/VBQUEB9uzZg0OHDiE5ORnZ2dmQyWSIjIxEv379MGHCBERHR9v8vJmZmYiPj6+zTpcuXbB27Vqb2/Y01oyDdu3a1dlGWFgYfvnlF7ue31Xjy1Pcaf/PnDkTGzdutKqtxMRENG3a1OrndmW/1meLFy/G559/Xmed999/H08//XS1coPBgBUrVmDLli24cuUKlEol2rdvj/Hjx+Mvf/mL3TF52ziwpw9KSkqwb98+/Pzzzzh9+jSysrJgNpsRHh6OXr16YcKECYiNjbUrHm8cC/aOg4EDByIrK6vO7U6dOgUfHx+bY3LV+KqP7Nn/1mxjsWrVKvTq1cvqeFzZr57gwIED+P7773HixAkUFhYiODgYzZo1Q+/evfHKK69AoaicnnnSewETy7tAo9Hg/fffv2O9/Px8PPPMM7h06RJUKhXatm2L/Px87N+/HwcOHMC7776LsWPH2vz8ly9fxjPPPIO8vDz4+fkhJiYGOTk52LFjB/bs2YOFCxfeMfHxdNb0wZQpU3Ds2DEAgL+/P9q0aYOysjJkZGRg1apVWL9+PRYuXIj+/fvbHUe3bt1qLI+JibG7TU9h7TiwuPfee6FSqaqVh4SE2PX8rhpfnsKa/d+yZcta/0YBID09Hfn5+YiMjERkZKRdcTi7Xz3FPffcgxYtWtS4rqbLxOt0Ojz33HM4duwY5HI52rZti9LSUhw5cgRHjhzBCy+8gDfeeMPmOLx5HNjSB7Nnz8aWLVsAAGq1Gi1atIAoikhPT8f69euxZcsWzJ49GyNGjLA7Hm8cC7aOA4vY2FgEBATUuE4QBJvjcNX4qu9s2f+RkZF1vh9kZ2cjOzsbarUaHTt2tCseZ/drfWc0GvHWW29J/1siIyPRvn17FBYW4syZM0hKSkJCQkKlxNLj3gtEcrk5c+aIsbGx4uTJk8XY2FgxLi6uxnovvfSSGBsbKz7xxBNiTk6OKIqiaDabxdWrV4uxsbFihw4dxLNnz9r03GazWRw2bJgYGxsrTpo0Sbx586YoiqJoMBjEzz77TIyNjRW7du0qXrt2zbEXWc9Z0wfjxo0Tp02bJh45ckQ0Go1SeXZ2tvjcc8+JsbGxYrdu3cTc3FybnjsjI0OMjY0VY2NjHX4dnszacWDZVxkZGU59fleML09i7f6vjdlsFuPj48XY2FhxwYIFNj+/q/q1vlu0aJEYGxsrvvnmmzZtZ+mvgQMHimlpaVL5nj17xHvvvVeMjY0V9+7da3M83jgO7OmDN954Q0xISBD3798v6nQ6qbygoECcNm2atK9SU1Ntjscbx4K94yAuLk6MjY0VDx8+7NR4XDW+6it7939dxo0bJ8bGxorTp0+3eVtX9Wt9N2vWLDE2NlYcMWKEmJycXGmdVqsV9+zZI+r1+krlnvZewHMsXezEiRP49ttvER8fj0GDBtVa7+zZs0hMTIRMJsOnn36K8PBwAOXf2IwePRrDhg2DyWTCkiVLbHr+vXv3IiUlBYGBgZg/fz4CAwMBAAqFAq+++ip69uwJrVaLr7/+2v4XWc9Z2weLFi3C/Pnz0bNnT8jlcqk8IiICCxcuRGhoKEpKSrBt27a7EXaDYm0fuIqrxpencMb+P3r0KDIyMgAATz75pDPDoyry8vKwevVqAMDcuXPRunVraV18fDyef/55ALB6mpqFt48DW7z99ttYunQp/vznP1c6qhgSEoJ58+YhJiYGJpMJ69atc2OUZA9XjS9vkpmZiaNHjwLg+4G1Dh8+jO+//x5NmzbF8uXLqx3l9fX1RXx8PJRKpVTmie8FTCxdyGAw4N1334VarcZ7771XZ91du3YBAPr06VPjNIXRo0cDKJ+XrdVqrY5hx44dAIDBgwcjODi42vpRo0ZVqtfQ2NIHjRo1qnVdYGAgunbtCgC4dOmSM0Ns8GzpA1dx1fjyBM7a/5ZzL7t161brVCpyjsTERBgMBrRs2RJ9+vSptn7MmDEAgOTkZFy5csXqdr15HNiqrvcDpVIp9QvfDzyPq8aXN9m0aRNEUURkZGSN+5Cq++abbwAAEydOrHX6b1We+F7AcyxdaOnSpTh//jzeeustRERE1Fn3xIkTAIAePXrUuL5z585QqVTQ6XRISUlB9+7drYrh5MmTdbZrKc/JycG1a9ekby0aClv64E50Oh2A8m+V7PXhhx/i4sWLEAQBTZs2Rb9+/TBo0CDIZA33Ox57+2DJkiW4fv06TCYTwsPD0adPHzzyyCM1npN0J64aX57AGWNAq9Vi586dABz/dtqZ/epJUlNTMX36dOTm5sLf3x/t2rXDo48+WuP51Za/19r+DsPDwxEdHY3MzEycOHECzZs3tyoGbx4HgG19cCfOeD/wxrFgbx+sXr0aX3/9NcrKyhAWFoYePXrgscces/oDekWuGl+ewBljQBRFbNq0CQAwfPhwhz6/OLNf6zOdTiddkKtv3764cOEC1qxZg7S0NKhUKnTo0AEjR46sdkE8T3wvYGLpImlpaVi6dCk6deqE8ePH37F+eno6ANT6R6FUKhEZGYnLly/j0qVLVnWyXq+XrrpVW7uRkZFQKpUwGAy4ePFig0osbe2Duly7dg1HjhwBUPtAtMaqVasqLa9ZswYdOnTA4sWL0axZM4dirI8c6YP169dXWt64cSMWLVqExYsXo1OnTja15Yrx5QmcNQZ27doFrVYLX19fDBkyxKGYnNmvniQlJQUpKSnScmJiIr788ks8++yzePPNNytNv7/T36tlXWZmpk1HzLx1HFjY0gd1KS0txd69ewHU/oHPGt44Fuztg+3bt1da3rZtGxYuXIj58+fjgQcesCkGV40vT+CMMeDM0yKc2a/1WWpqKgwGAwDg2LFj+OCDD6RlANi3bx+++uor/POf/8TQoUOlck98L2Bi6QKiKOKdd96B0WjE7NmzrRqoRUVFAFDjdFULy7qbN29aFUdJSQnMZnOd7QqCgKCgINy4ccPqdj2BPX1Qlzlz5sBgMKBt27aIi4uzaVuFQoHHH38cjz76KNq2bYsmTZqgoKAABw4cwGeffYaUlBRMmjQJGzZsaFDf0tnbB/Hx8Rg2bBjat2+PiIgIaDQa/Prrr/j000+RkZGBiRMnYtOmTTZdldQV46u+c+YY2LBhAwDgoYcesvtv1BX96gmaNGmCqVOn4sEHH0R0dDQCAgJw6dIlfPfdd1i9ejVWrFgBhUKBv/3tb9I2rvp79cZxANjXB3X59NNPcePGDYSGhmLkyJE2x+ONY8HePujVqxf69OmDP/3pT4iKioLBYMCxY8ewaNEinD17FpMnT8Z///tfmxJxbxwHzhwDlveD7t2723001xX9Wp/l5uZKv3/wwQfo2LEj3nnnHbRv3x7Z2dn49NNPsWPHDsycOROtW7eWzr/0xPeChjv/zo2+++47HD9+HGPHjsWf/vQnq7axTKupeNJuVZbpMWVlZTa1WXFbZ7TrCezpg9r8+9//xu7du6FUKjFv3jybP6BHRETg448/xoABAxAdHQ2VSoXw8HCMGjUK//3vfxEQEIDLly9j5cqVDsVZ39jbB0uWLMHDDz+MFi1awMfHB6GhoXj00Uexdu1aREVFobCw0OYT1V0xvuo7Z42BjIwMp1ykwRX96glGjx6NKVOmoHPnzggNDYVKpUK7du0we/Zs6RLxK1asQGZmprSNq/5evXEcAPb1QW22bduGFStWACj/wtGeL1q8cSzY2wfz5s3D8OHD0aZNG/j6+iIoKAhxcXFS0qHT6fDxxx/bFIs3jgNnjQGNRiOdn+fI+4Er+rU+02g00u9qtRrLli2Tppu2aNECCxYsQIcOHWAwGPDll19KdT3xvYCJpZNdu3YNCxYsQHh4OF577TWrt7PcBLbiofGq9Ho9gPI/SlvarLitM9qt7+ztg5ps3LgRCxYsgCAImDt3rsNJalUtWrSQbki8e/dup7btTs7sA4vQ0FAkJCQAAPbs2QNRFK3e1hXjqz5z5v63XKShadOmLrlIgyP96ukmTpyIJk2awGg0IjExUSp31d+rt40Da9TWBzX55ZdfMHPmTADA66+/7vQrXHvrWLClDyzUarX0v+23336TjsBYg+OgMlv2f8XTIgYPHuz0WBzp1/qs4ufxJ554otqRQplMhgkTJgAAfv75Z2m2oSe+FzCxdLI5c+agpKQE77zzjk3fZAYFBQFAnYPIss5S904CAgKkk6pra1cURekwt7Xt1nf29kFV27dvx6xZsyCKIv7+979j2LBhTozytvvuuw/A7TnvDYGz+qAqy74qLCxEYWGh1du5YnzVZ87a/xUv0jBs2DCX3bDa3n71dHK5HF26dAEAXL58WSp31d+rt40Da9TWB1UdPXoUU6ZMgcFgQEJCAl566SWXxOONY8HaPqiqW7duAACz2Syd82cNjoPKbNn/lquD/+Uvf3HZqTv29mt9VjGRbNOmTY11LLcS0Wg00tj3xPcCnmPpZGfPngUAzJ49G7Nnz660znI4OTs7WzopefHixejWrRtatmyJa9eu1TqoDQYDrl69CgBo2bKlVbGoVCpERUUhMzMTV65ckQZrRdnZ2dI3Fq1atbKq3frO3j6oaPfu3ZgxYwZMJhPefPNN6aiiK1imIphMJpc9x93mjD6oScVpG7bsL1eMr/rMWfv/yJEjyMzMhCAILr1Xmb392hBYXrvRaJTKWrZsiePHj9f5Ic9yaXlb/l69bRxYq6Y+qCgpKQkJCQkoLS3F+PHjMX36dJfHAnjXWLhTH9S1DWD7+4Erxpcns2b/O+u0CGtjARrOGKh4/8napp9WPKppOWLpie8FPGLpInl5edV+SkpKAJT/wVjKLEmd5R6Jx44dq7G9U6dOwWAwwMfHBx06dLA6Dku7v//+e43rLeUREREO346jvrG1DywOHDiA119/HUajEVOnTsXEiRNdGucff/wBAA1u/wP290FtLPvKx8cHISEhVsfhqvFV3zm6/y3fTvfo0cOlVy22t18bgprGv+Xv9fjx4zVuc+3aNelcKEtda3jrOLiTuv4HnzlzBi+88AK0Wi1GjhyJWbNm3ZVYvG0s2PM+eP78eel3W7Zz1fjyZNbs/4qnRfTu3dtlsdjbr/VZeHi4dCuR2o7CWsorjn1PfC9gYulkiYmJOHfuXI0///znPwEATZs2lcosg/Phhx8GUD6nvKZvENasWQMA6N+/P/z9/a2Ox9Luzp07azzkvXbtWgBwyVx5d7G3DwDg119/xSuvvAKDwYAXX3wRU6ZMcWmsGo0G3333HQA0qEtrO9IHtTEajdINhvv06QOFwvoJF64aX/WVM/Z/xYs0PPHEEy6L1ZF+9XT79++XPtBVHP/x8fFQKpVIT0/H4cOHq223evVqAEDHjh1rvLl1bbxtHFijtj4AgHPnzmHSpEkoLi7GY489hjlz5rhsOjjgvWOhrj6oy7JlywAAbdu2telWaa4aX57Kmv1f9d6VrhwH9vZrfWe5VdfWrVtrPDK8bt06AEDPnj2lse+J7wVMLOuJTp06IS4uDiaTCa+//jquX78OoHwwr1mzBps3b4ZMJsPkyZOrbbt8+XIMHDiwxumagwYNQrt27VBcXIw33ngDxcXFAMqnFyxcuBBHjx6Fr6+vy4/KeYKkpCS8/PLL0Ol0mDBhAqZNm2b1tnX1wbvvvosff/yx2gWU0tLS8PzzzyMzMxN+fn6YNGmSw6/B033yySfYuHGjdFTNIjs7G1OnTsWJEyegUChqTPh37tyJgQMHYuDAgdXWOTK+vJXlIg1+fn5WffFU1/53pF892R9//IH33nsPqamplcrNZjO2bdsmTamMi4tD586dpfVhYWEYPXo0AGDWrFm4ePGitC4xMRFfffUVAHAcWMHePkhPT8fEiRNRWFiIwYMH46OPPrL6RvAcC5XZ2wf/93//h1WrVqGgoKDSdgUFBXjvvfekL76mTp1a7TlPnDgh9UFOTk6ldY6ML09k7/6vqOJpEdZ80VjX/nekXz3ZpEmTEBgYiMzMTHzwwQfSlVlFUcTKlSuxb98+CIIgXcAL8Mz3Au/4OsxD/OMf/8DTTz+N5ORkxMfHo23btigoKEB2djYEQcDbb79d4z19iouLkZWVVWObMpkMCxcuxNixY/HTTz+hf//+aNWqFXJycnDjxg0olUp8/PHHDepbIXvNnDkTWq0Wcrkcp06dqvW8yo4dO+Ldd9+tVFZXH5w6dQpr166FUqlE8+bNERAQgIKCAmlefHBwMD777DNER0c79wV5oIsXL2LZsmWYNWsWmjVrhuDgYBQXF+PSpUsQRRE+Pj748MMPpQsNVKTVamvtA8D+8eWtLNNgH374Yau+saxr/zvSr57MaDRizZo1WLNmDUJCQhAVFQW5XI4rV65IM0h69OiBf/3rX9W2nTFjBpKTk5GUlIShQ4ciJiYGWq1W+r8xceLEGq9KynFQmb19MGfOHOTl5QEArl69inHjxtXYfuPGjbFo0aJKZRwLldnbBzk5OVi5ciXmzp2Lpk2bIjQ0FGVlZbh48SKMRiNkMhmmTZsmHX2pSKfTSX1Q09Ehe8eXJ3Lk/5CF5f2gZ8+eVp0WUdf+d6RfPVloaCgWLVqEyZMnY82aNdi+fTtatmyJnJwc5ObmQhAEzJgxo9oMIk97L2BiWY+EhoZi/fr1WLZsGXbu3IkLFy7Az88P/fv3x6RJk+y+1H+rVq2wZcsWfPHFF9i3bx/Onz+PoKAgPPzww3jppZekG7F6O8t5ZiaTqdb57ABsnp704osv4uDBgzhz5gzy8vJw+fJlqNVqdOrUCf3798fYsWPRuHFjh2JvKJ5++mmEhYXhzJkzuH79OrKysqBUKhETE4O+ffti3Lhxdt+Q2VXjqyGqeJEGZ0yDdWW/1mdNmzbFa6+9hhMnTiAtLQ2XL1+GXq9HcHAw+vfvj6FDh2Lo0KE13htXrVZj5cqVWL58ObZu3Yr09HQolUr06tUL48aNs/tDl7eNA3v7oOIMk1OnTtXZvi28cSzY2wePPvoogPL9f/XqVaSmpkIulyM6Ohq9evXCM888Y/e5wK4aX/WRI/+HAOefFuHKfq3v7r//fmzevBlLly7FoUOHkJqaioCAAAwcOBDPPfccevXqVW0bT3svEERvuVESERERERERuQTPsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIiIiIiIocwsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIiIiIiIocwsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIiIiIiIocwsSQiIiIiIiKHMLEkIiIiIiIihzCxJCIi8jDDhg1Du3btcOjQIbu2LyoqQufOndGuXTu0a9cO6enpzg2QiIi8DhNLIiIiD5KVlYXU1FQEBQWhV69edrWxdetW6HQ6aXn9+vXOCo+IiLwUE0siIiIPsnfvXgBA//79oVAo7Gpj3bp1AIDx48cDADZu3AiTyeScAImIyCsxsSQiIvIglsQyPj7eru2Tk5ORkpKCoKAgzJgxA9HR0cjNzcWBAwecGSYREXkZ+77qJCIiohqlpKRg+PDhVtV9/fXX8dJLL1nddlFREX7//XcolUr079/frvgsRyuHDBkCHx8fDB8+HJ9//jnWr1+PgQMH2tUmERERj1gSERE5UXp6OsLCwmr98ff3l+p27NjRprb3798Po9GIPn36ICAgwObYdDodtm3bBgBS8jt8+HAIgoD9+/cjLy/P5jaJiIgAHrEkIiJyqiFDhmDIkCE1rsvKysJf//pXaDQaDBgwAH369LGpbUenwe7atQs3b95EixYt0K1bNwBAs2bN0L17d/z+++/YtGkTnn/+ebvaJiIi78YjlkRERHdBRkYGxo8fj4yMDAwaNAiLFy+GSqWyenu9Xo+DBw9CEAS7p6xapsEOGzasUrnl6CWvDktERPZiYklERORily5dwtixY5GVlYUhQ4Zg4cKFNiWVAPDrr79Cq9Xi3nvvRXh4uM0xZGRk4MiRIxAEoVpiOWTIEKjValy8eBHHjx+3uW0iIiImlkRERC504cIFjB8/HteuXcPjjz+O+fPn23WbEEenwa5fvx6iKKJHjx6Ijo6utC4gIACDBg0CcPuoJhERkS2YWBIREblIamoqxo8fj9zcXIwYMQIfffQR5HK5ze2IoojExEQAkBJAW5jNZmzcuBFA9WmwFpbpsDt27IBGo7H5OYiIyLsJoiiK7g6CiIiooUlOTsbEiRNRWFiIMWPG4P3334cgCHa1dfLkSYwaNQrNmzfH7t27bd7+wIEDSEhIsLr+3LlzMXLkSJufh4iIvBePWBIRETnZyZMnMWHCBBQWFuLZZ5/F7Nmz7U4qAedMg7UFp8MSEZGteLsRIiIiJ/r999+RkJAAjUaDSZMm4W9/+5vDbe7ZsweAfYllfn6+NI120aJF6NevX61109LS8NRTTyEpKQkXL15E69at7QuYiIi8Do9YEhEROcnhw4fxwgsvQKPRYPLkyU5JKtPT05GWloZGjRpJ9560xebNm2EwGBAYGIi4uDj4+/vX+tO5c2cpmeRRSyIisgUTSyIiIif45Zdf8OKLL0Kr1eLVV1/Fa6+95pR2LdNg4+Li7LrwjyVBjI+Pt+oWJ4MHDwZQnpAajUabn4+IiLwTp8ISERE5wWeffYaysjIIgoBvv/0W3377ba11P/nkE/Tt29eqdh05v/LEiRO4cOECgNsJ450MHjwYS5YsQV5eHvbv32/XVWiJiMj7MLEkIiJykMlkwvnz5wGU3xokLy+vzvrNmze3qt38/HwkJSVBrVbjgQcesDkuy9HKwMBAq7dv164d2rRpg7S0NKxbt46JJRERWYW3GyEiIqqn1q1bh1mzZiEuLg5ffvmlu8MhIiKqFc+xJCIiqqcs02B51JCIiOo7ToUlIiKqp7p164aOHTvaff9KIiKiu4VTYYmIiIiIiMghnApLREREREREDmFiSURERERERA5hYklEREREREQOYWJJREREREREDmFiSURERERERA5hYklEREREREQOYWJJREREREREDmFiSURERERERA5hYklEREREREQOYWJJREREREREDvl/Bmc20OoiamoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10, 6))\n", "plt.plot(interface.z / si.ANGSTROM, initial_density[0], linestyle=\"dashed\", label=\"initial density\")\n", "plt.plot(interface.z / si.ANGSTROM, (interface.density / (si.KILO * si.MOL / si.METER**3))[0], label=\"equilibrium density\")\n", "\n", "plt.xlim(40, 60)\n", "plt.ylim(-5, 60)\n", "plt.ylabel(r\"$\\rho$ / kmol m$^{-3}$\")\n", "plt.xlabel(r\"$z$ / A\")\n", "sns.despine(offset=10)\n", "plt.legend(frameon=False);" ] }, { "cell_type": "markdown", "id": "bc985a88", "metadata": {}, "source": [ "## Comparison to NIST data using `SurfaceTensionDiagram`\n", "\n", "We can use the above steps to calculate multiple VLE's and then - for each VLE - calculate the surface tension. We provide a utility object, the `SurfaceTensionDiagram`, that you can use to do exactly this task. Let's load some experimental (correlation) data obtained from the NIST Webbook and see how the water model compares to that." ] }, { "cell_type": "code", "execution_count": 9, "id": "caa1fda7", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Temperature (K)Pressure (MPa)Density (l, mol/l)Volume (l, l/mol)Internal Energy (l, kJ/mol)Enthalpy (l, kJ/mol)Entropy (l, J/mol*K)Cv (l, J/mol*K)Cp (l, J/mol*K)Sound Spd. (l, m/s)...Volume (v, l/mol)Internal Energy (v, kJ/mol)Enthalpy (v, kJ/mol)Entropy (v, J/mol*K)Cv (v, J/mol*K)Cp (v, J/mol*K)Sound Spd. (v, m/s)Joule-Thomson (v, K/MPa)Viscosity (v, uPa*s)Therm. Cond. (v, W/m*K)
0275.00.00069855.5020.0180170.139780.139790.510075.90375.9151411.4...3271.5042.83045.115164.0625.58033.980410.33558.898.99860.016879
1285.00.00138955.4790.0180250.896780.896813.213975.39775.5331454.3...1704.3043.07845.445159.5225.73634.170417.48408.819.29410.017535
2295.00.00262155.3840.0180561.651101.651205.815474.76575.3611487.7...934.3643.32445.773155.3825.89834.374424.46304.019.60180.018214
3305.00.00471955.2330.0181052.404402.404408.326474.03875.3001513.1...536.2043.56846.099151.5926.06934.596431.28231.329.91960.018918
4315.00.00814555.0340.0181713.157303.1575010.756073.23575.3011531.7...320.5843.81146.422148.1026.25234.843437.93180.6610.24600.019646
\n", "

5 rows × 25 columns

\n", "
" ], "text/plain": [ " Temperature (K) Pressure (MPa) Density (l, mol/l) Volume (l, l/mol) \\\n", "0 275.0 0.000698 55.502 0.018017 \n", "1 285.0 0.001389 55.479 0.018025 \n", "2 295.0 0.002621 55.384 0.018056 \n", "3 305.0 0.004719 55.233 0.018105 \n", "4 315.0 0.008145 55.034 0.018171 \n", "\n", " Internal Energy (l, kJ/mol) Enthalpy (l, kJ/mol) Entropy (l, J/mol*K) \\\n", "0 0.13978 0.13979 0.5100 \n", "1 0.89678 0.89681 3.2139 \n", "2 1.65110 1.65120 5.8154 \n", "3 2.40440 2.40440 8.3264 \n", "4 3.15730 3.15750 10.7560 \n", "\n", " Cv (l, J/mol*K) Cp (l, J/mol*K) Sound Spd. (l, m/s) ... \\\n", "0 75.903 75.915 1411.4 ... \n", "1 75.397 75.533 1454.3 ... \n", "2 74.765 75.361 1487.7 ... \n", "3 74.038 75.300 1513.1 ... \n", "4 73.235 75.301 1531.7 ... \n", "\n", " Volume (v, l/mol) Internal Energy (v, kJ/mol) Enthalpy (v, kJ/mol) \\\n", "0 3271.50 42.830 45.115 \n", "1 1704.30 43.078 45.445 \n", "2 934.36 43.324 45.773 \n", "3 536.20 43.568 46.099 \n", "4 320.58 43.811 46.422 \n", "\n", " Entropy (v, J/mol*K) Cv (v, J/mol*K) Cp (v, J/mol*K) \\\n", "0 164.06 25.580 33.980 \n", "1 159.52 25.736 34.170 \n", "2 155.38 25.898 34.374 \n", "3 151.59 26.069 34.596 \n", "4 148.10 26.252 34.843 \n", "\n", " Sound Spd. (v, m/s) Joule-Thomson (v, K/MPa) Viscosity (v, uPa*s) \\\n", "0 410.33 558.89 8.9986 \n", "1 417.48 408.81 9.2941 \n", "2 424.46 304.01 9.6018 \n", "3 431.28 231.32 9.9196 \n", "4 437.93 180.66 10.2460 \n", "\n", " Therm. Cond. (v, W/m*K) \n", "0 0.016879 \n", "1 0.017535 \n", "2 0.018214 \n", "3 0.018918 \n", "4 0.019646 \n", "\n", "[5 rows x 25 columns]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "literature = pd.read_csv(\"../../../examples/data/water_vle_nist.csv\", delimiter=\"\\t\")\n", "literature.head()" ] }, { "cell_type": "markdown", "id": "96ae9524", "metadata": {}, "source": [ "For the `SurfaceTensionDiagram`, we need to provide the VLE's. We compute those using the `PhaseDiagram` object (here for 50 temperatures between 275 Kelvin and the critical temperature) from which we get a list of `PhaseEquilibrium`s via the `states` filed. The `SurfaceTensionDiagram` is nice, because we can reuse equilibrium density profiles from prior iterations as input for the next iteration. It's therefore typically faster and more stable than an \"naive\" implementation by hand.\n", "\n", "The `SurfaceTensionDiagram` takes the same arguments `n_grind`, `l_grid` and `critical_temperature` as discussed above." ] }, { "cell_type": "code", "execution_count": 10, "id": "c0a7854c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 523 ms, sys: 3.87 ms, total: 526 ms\n", "Wall time: 525 ms\n" ] } ], "source": [ "%%time\n", "vles = feos.PhaseDiagram.pure(\n", " pcsaft, \n", " 275*si.KELVIN, \n", " 50,\n", " critical_temperature=cp.temperature\n", ")\n", "sfts = feos.SurfaceTensionDiagram(\n", " vles.states, \n", " n_grid=512, \n", " l_grid=100*si.ANGSTROM, \n", " critical_temperature=cp.temperature\n", ")" ] }, { "cell_type": "markdown", "id": "caa7026e", "metadata": {}, "source": [ "We now can extract all surface tensions via `surface_tension` as well as the liquid and vapor states via the `liquid` and `vapor` getters, respectively. Let's store the results in a pandas `DataFrame` to make plotting easier." ] }, { "cell_type": "code", "execution_count": 11, "id": "6626c4c7", "metadata": {}, "outputs": [], "source": [ "dft_data = pd.DataFrame(\n", " np.array([\n", " sfts.liquid.temperature / si.KELVIN, \n", " sfts.surface_tension / si.NEWTON * si.METER\n", " ]).T, \n", " columns=[\"Temperature (K)\", \"Surf. Tension (l, N/m)\"]\n", ")" ] }, { "cell_type": "code", "execution_count": 12, "id": "279a66a3", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAJRCAYAAABIq5pNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYVMfXwPHv0ruAYsECRgUVK2rsGkvs3VhSNPYktqiJXWOKPT+NLaZYYknUxIgFe++9oogNBamChd4W9r5/8O7KhuKiWMDzeR6emJk7s3N3V9yzM3NGpSiKghBCCCGEEEII8ZoZve4BCCGEEEIIIYQQIAGqEEIIIYQQQog3hASoQgghhBBCCCHeCBKgCiGEEEIIIYR4I0iAKoQQQgghhBDijSABqhBCCCGEEEKIN4IEqEIIIYQQQggh3ggSoAohhBBCCCGEeCNIgCqEEEIIIYQQ4o0gAaoQQoiXatOmTfTq1QtPT0/c3d1xd3dn1apVr3tYIheCg4N1r11wcPDrHs4rlZiYyIIFC2jbti3VqlXTPQ9+fn6ve2hCCFEgmbzuAQghhMg9RVHYvXs327dv5/r16zx69AhjY2MKFy6Mk5MT1apVo3bt2tSvXx8bG5vXNs6VK1cyZ84cAExMTChcuDAqlQorK6vXNqaXyc/Pj/3792Nra0u/fv1e93BEHhg9ejSHDh0CwMLCgiJFigDp7+f8Jjg4mM2bNwMwYsSI1zwaIYTImkpRFOV1D0IIIYThYmJiGDZsGGfPntWVmZiYYGNjQ1xcHKmpqbryWbNm0a1bt9cxTAAaNmzIw4cP6dOnD+PHj8fU1PS1jeVV8PLyYuLEiZQsWZKDBw++7uHkmQcPHvDpp58CsHr1aooVK/aaR/Rq+Pv7065dOwB++ukn3Z/zqzNnztC3b18Abt68+ZpHI4QQWct/X/8JIcRbbty4cZw9exZjY2M+/fRTevXqRZkyZTAyMiI1NZU7d+5w7Ngxtm/f/lrH+fjxYx4+fAhAz549C3xwWpAVK1aM3bt3v+5hvHK3bt0CwN7ePt8Hp0IIkV9IgCqEEPlIQECAbrnhqFGjGDJkiF69iYkJFStWpGLFigwePJikpKTXMUwgfe+eVkFd0isKNu3fH2tr69c8EiGEeHvIEl8hhMhHdu3axahRowDYuXMn5cqVy3Uf7u7uAKxZs4a6detmeU2fPn04e/Ysw4cPz7RXLWP78uXL8/vvv3P48GHCw8NJSkpizZo1umWEWcm4/DU6Opq9e/dy/Phx7t69y4MHD0hMTKRIkSJ4enrSp08fatSokeP9JCQk8Pfff3PgwAFu375NfHw8jo6OlClThubNm9OpUyfdvsGMgoODWb16NSdPniQ0NBSNRkOJEiVo1KgRAwYMwNnZOcfH/S/t85KdrJ7Lx48fs3r1ao4cOUJQUBApKSkULVqUunXr0r9/fypUqJCpn/8u0wwMDOTXX3/l5MmTPHr0CEdHR5o0acKIESOyXYrr7+/PqlWrOHv2LOHh4Wg0GhwdHSlWrBj16tWjc+fOeu+t4OBgWrRoAcCBAwcoVapUpj5jY2NZvXo1Bw4cIDAwkNTUVIoXL079+vUZNGgQpUuXzvF5W7NmDR4eHixbtow9e/YQGhqKpaUlNWrUYOjQoVSvXj3H5zcnycnJrF+/nt27d+Pv709SUhJFihShTp069O/fn0qVKuldv3jxYpYsWZJtf127dmX27Nk5Pubjx49p0KABiqLg7e2Nm5ubXv1vv/3G/PnzAZg6dSqffPKJXv2lS5fo3bs3pqamnD9/HgsLCwDUajVHjx7l8OHD+Pr6EhERQVRUFLa2tlSuXJmuXbvSvn17VCqVXn/NmzcnJCQkV/cUFxfHunXrOHDgAPfu3SMhIYHChQvj6elJ3759qVmzZqZ+/vte0Wg0LFu2jBMnThAREUHRokUL1PJ3IUTekxlUIYTIp8LDw58rQM0r9+/fZ8yYMTx8+BBzc3Nd0hhTU1OKFClCWloaT548AcDBwQFjY2Pdn7XWrFmjCwSMjY11CZ1CQ0MJDQ1lx44dTJo0KduA19fXl2HDhhEWFgaAkZERdnZ2PHnyhAcPHnDu3DmMjIwyJSzatm0bkydPJiUlBQAzMzOMjIy4d+8e9+7dw8vLi0WLFtGoUSODn48iRYqQlJREXFwcRkZGODo66tX/dxb55MmTfPnll8TExOieN1NTU4KDgwkODmbbtm1Mnz6dLl26ZPuYp0+f5osvviAhIQFra2sUReHBgwds3LiRI0eO8O+//2YKUk+cOMHnn3+uu3dTU1MsLS0JDw8nPDycK1euYGpqmqskOrdv32bQoEGEh4cD6N4PgYGBBAYG4uXlxf/+9z9at26dbR+RkZF069aNwMBAzM3NMTIyIioqisOHD3PixAl+/fXXXL0eWg8ePGDQoEG65bqmpqZYWFgQGhrK1q1b8fb2ZtKkSfTp00fXxsrKKsfX05DEY46OjlSoUIFbt25x+vTpTAHq6dOn9f783wBVW1+jRg1dcApw8eJFhg4dqjcWMzMzHj9+zPHjxzl+/Dj79u3jp59+wsjo6WENDg4OxMXFER0dDZDpS5v/3pOfnx+ff/657jU1NjbGwsKC8PBwdu7cya5duxg9ejSfffZZts/BpUuX+Oabb0hISMDS0lKW+QshDKMIIYTIN4KCghR3d3fFzc1N6dChg3L37t1c9+Hm5qa4ubkpp0+fzvaaTz75RHFzc1MWLVqUbfsaNWoorVu3Vk6ePKmkpaUpiqLojScoKEh3bVBQUJaPs2HDBmXRokXK1atXleTkZEVRFEWj0Sj3799Xpk+frri7uyuVKlVSfH19M7UNDQ1V6tatq7i5uSlNmzZVduzYoSQkJOj6uH37trJ48WJl69ateu2OHz+uVKxYUalcubIyd+5cJSgoSNFoNIpGo1H8/f2VkSNHKm5uboqnp6cSEhLyjGdT36ZNmxQ3NzelWbNmOV5348YNpVq1aoqbm5syZcoU5c6dO0pqaqqiKIoSEhKifPvtt4qbm5tSuXJlxcfHR6/t6dOndc9rnTp1lM8//1y5c+eOoiiKkpycrOzYsUOpWbOm4ubmpowdOzbTY7ds2VJxc3NTBgwYoNy8eVNXnpSUpNy6dUtZvHixsmnTJr02Ob2WsbGxSvPmzRU3NzelcePGyuHDh3XvBz8/P6Vnz56Km5ubUqVKFcXPzy/TeDLeS7t27ZRTp04paWlpikajUa5cuaK0bt1a95xq+zVUamqq0qNHD8XNzU2pVauWsnXrVt377P79+8pnn32muLm5Ke7u7srhw4cztTf09czODz/8oLi5uSlffPGFXnlycrJSrVo1pVq1aoqHh4fy7rvvZrq3Tz/9NMu/g1euXFGmTp2qnDhxQomNjdWVP3nyRFm9erXi6empuLm5KatXr840nozvnZw8ePBAqV+/vuLm5qYMHz5cuXr1qpKSkqIoiqI8fPhQWbBggVK5cmXFzc1N2bdvn17bjO+VGjVqKD169NB7Dz/P7ywhxNtFAlQhhMhnpkyZovsA6O7urnTp0kX59ttvlY0bNyo3b95UNBpNju3zKkD19PRUwsLCsu3DkAD1Wb777jvFzc1NmTRpUqa6r7/+WnFzc1PeffddJTQ01KD+0tLSlFatWilubm7Khg0bsr3u888/V9zc3JTp06fnaryGBjR9+/ZV3NzclHnz5mV7TXbBTcYgo0+fPlkGbWvWrFHc3NyUatWqKWq1Wlf+8OFDXdsHDx4YfF85vZa//fab4ubmpnh4eOgFvFqxsbFKs2bNFDc3N2XIkCGZ6rX91qtXT3n48GGm+hs3buiuOX/+vMFjVhRF2bFjh67tsWPHMtWr1WpdANuhQ4dM9S8aoO7bt09xc3NTateurfc6nT17VnFzc1M+/fRTpVevXoqbm5ty7do1Xb02gHVzc1POnDmTq8fctWuX4ubmprRs2TJTnaEB6sSJExU3NzdlzJgx2V7zxx9/KG5ubkqnTp30yjO+V5o1a6bExcXlavxCCGH07DlWIYQQb5Jp06YxdOhQrKysUBSF69evs27dOiZPnkzHjh1p2LAhs2bN0mXQfVk6d+5M8eLFX+pjNG3aFIALFy7olSckJLBr1y4AhgwZQokSJQzq79y5cwQEBODg4ECPHj2yvU67rPb48ePPMeqcBQcHc/r0aUxMTBgwYMAzx3Dq1CnS0tKyvObzzz/XW8appd0DmJSURGBgoK7c2tpad31kZOTz3oIe7evQunXrTMtYIX3p6KBBgwA4evQosbGxWfbTs2dPChcunKnc3d1dt+c1t0ej7Ny5E4CaNWtmuTzYxMSEYcOGAekZe/P66JV3330XIyMjYmJi8PX11ZWfOXMGgHr16lGvXj1Af8nv5cuXSUpKwtzc/Jl7sP/rvffeA9KX4D/Pa5ycnKzLAD548OBsr+vcuTMAN27cyPZ3zccffywJpoQQuSZ7UIUQIp8xMTHhyy+/ZMCAARw8eJBz585x9epV/P39UavVPHr0iFWrVrF161Z+//13qlWr9lLG4enpmSf9BAUFsW7dOs6cOcP9+/eJj49Ho9HoXfPgwQO9/7927RpqtRqAZs2aGfxYFy9eBNKTvzRu3Djb67R9h4aGGtx3bseg0Who3759ttdpg9KEhASioqKyDN6ye22LFi2q+3NUVJTuzxYWFtSvX58TJ04waNAgevfuzXvvvUelSpUwMzPL9b2kpKTogrr69etne13Dhg2B9Hv29fXVBWUZ5ZQEqWjRogQHB+v2Txrq2rVrzxxbvXr1MDY2Ji0tjWvXrj0z2VVu2NnZUalSJXx9fTl9+jRVq1YFngaj9erVIzExkV9++YXTp08zcOBAvfqaNWtm+brExcWxYcMGDh8+jL+/P7Gxsbr3bEbh4eE4OTnlaszXrl0jOTkZQDeeZwkNDc0yEVle/Y4QQrxdJEAVQoh8ytbWls6dO+tmMpKTk7lw4QJr1qzh0KFDPHnyhBEjRrB3717Mzc3z/PGzCphya9++fYwZM0aXsAfSZ9zMzc1RqVSo1Wqio6NJSEjQa5dxxqZkyZIGP15ERASQHoAaMsP8Mo7p0Y5Bo9EYPMud8ciejLJL1qNNWAWQmpqqVzd9+nS++OILbty4wdKlS1m6dCmmpqZUrVqVFi1a8MEHH2Bvb2/QuKKjo3WBdHYZgwG9mfbHjx9neU1OM23a+/nvvTzLo0ePnjk2c3NzHBwcePjwoe76vFS3bl1dgKo9+uny5ctYW1tTpUoV0tLSMDc35/z586SmpmJiYqKbYc0qy/a9e/fo16+fLnkRgKWlJba2trrZce37Krv3TU6078+M/TxLdo+TF78jhBBvHwlQhRCigDA3N6dBgwY0aNCACRMmsHnzZsLDwzl27BgtW7bM88fLamlpbjx58oQJEyaQkpJCvXr1GDZsGNWqVdPLWHrq1KlMGXhfhDaYql69Ov/880+e9Zsb2tnhIkWKcOLEiVf++M7OzmzevJkTJ05w5MgRLl68yM2bN7l48SIXL17k999/Z+HChTnOOgrD1atXj5UrV3Lx4kXUarXuvw0bNsTExAQTExNq1KjBmTNn8PHxoVKlSly5cgXIOkCdOHEi4eHhlCxZknHjxlGvXj29LxTS0tKoXLkyAMpznCSYcfWCj4/PC3259aK/I4QQbyf5zSGEEAVQz549dX++e/euXp32uBftMr6sZLdPMC8dOXKEuLg4ChUqxK+//sq7776rF5xC9vskMy5bzOlsx+zavYylu4bSLoV88uRJppnhV8XIyIjGjRszZcoUvLy8OHPmDP/73/9wdnYmOjqar7/+Wm9WOzuFChXSvZ8yzuj9V8a6/x6/8zJpZ/ByGltycrJuGfTLmPGrXbs2JiYmJCQkcOXKFb3lvVraQPT06dNcuHABtVqNlZVVpiXcYWFhXLp0CYD58+fTpk2bTLPdL7r3PONS3dz83RJCiLwiAaoQQhRAGc/c/O8eNjs7OyD7D+1xcXH4+/u/vMH9P+3jly1bFktLyyyvOXXqVJblVapU0Z2peOjQIYMfU7snLjIykqtXr+ZmuAbRzhjlNHOlHUNaWhpHjx7N8zE8DxsbGzp27MiMGTOA9CBHe25oTszMzHR7NjMm+fmvkydPAunPj4eHRx6M2DBVqlQBch7bmTNndEuHtXtE85J2Ka92HBkTJGllTJSkrff09Mx0bqj2vF9AN0v6X9rnOisZZzSze49WrVr1uf5uCSFEXpEAVQgh8pGgoCDu3bv3zOu2bNmi+/N/A4KKFSsCsGfPnizbrly50qDZsxdla2sLQEBAQJazuX5+fnh7e2fZ1tLSUpdg6Pfff9f74J6TunXr4uLiAsCsWbOeeZ8ZEwwZQrsnNCYmJttrXF1deffddwH46aefnjlbndsx5ORZ95txOaehyzPbtWsHpL+fsgpq4+PjWb58OZCelVn7ur8K2rFdunQpy4zMqampLF26FAA3N7cssxDnBW0AevDgQa5du4a9vb3u7yGkJ7uysrLi8uXLui8tslrem/G5u3HjRqb6uLg4fvnll2zHkXHPcnbvUSsrKzp27AjAsmXLnrnaIC/fn0IIARKgCiFEvnLnzh3atWvHkCFD2LJlC8HBwbo6tVrN9evXmThxIn/88QeQ/sG3Vq1aen1oA7vjx4+zaNEi4uLigPTkNfPnz+eXX37RzbK+TA0bNsTIyIioqCi+/vprXabelJQUdu7cyYABA3JMnDN69GgcHByIioriww8/ZOfOnbqkRoqicOvWLebMmaMXrJuYmPDdd99hYmLChQsX+OSTTzh16pReBtSgoCDWr19P9+7dWbduXa7uqUKFCkB6oKA94iQrU6dOxcrKioCAAHr27Mn+/fv1gvQHDx6wZcsWPv30U/73v//lagw5uXTpEh07dmTVqlX4+/vr9hsqisLFixf59ttvgfSkRoZms/3www8pVaoUarWawYMHc+TIEV2/N2/eZODAgQQHB2NmZsaoUaPy7F4M0bp1a1124FGjRuHt7a17rYOCghgxYoRuyezXX3/90sahDTZ9fX1JTU2lbt26qFQqXb2pqSmenp4kJyfrAs+sMh2XK1cOZ2dnACZNmqTLUgzpr23fvn1zzHTs6uqqmx3duHFjtrOoo0ePpmjRojx58oRevXqxZcsW3e8JSP9dsWfPHoYNG8ZXX31l6NMghBAGkSRJQgiRj5iYmKDRaDhy5AhHjhwB0j/cWltbEx0drfeB08PDgyVLlmSaCevWrRve3t6cOXOGn3/+maVLl2JnZ6ebURk7diyHDx/m7NmzL/VeXF1dGThwIMuWLWPv3r3s3bsXW1tbkpKSUKvVlCpVilGjRmUbOBQvXpwVK1bwxRdfEBYWxujRozE2NsbW1pbExERdwDdx4kS9dvXr12fhwoWMGzeOK1eu0K9fP91zmJCQoDfLmNvkUi4uLtSvX59Tp04xevRopkyZotsj2LdvX13CJzc3N5YvX86XX37J3bt3GTZsmG7sSUlJetmDS5cunasxPMutW7eYNWsWs2bN0t13XFycbpmrjY0N8+bN0+0tfRYbGxt++eUXBg0aRHh4OEOGDMHc3BxTU1NdUGNmZsaPP/6oN2v4KhgbG7N48WIGDhzI7du3+frrr5k4cSKWlpa697uRkRETJ07Unbn7MmiX62qD46xmR+vWraub5bWxsclyKbSRkRHffPMNw4cP5/bt23Tv3l23PD4xMRErKyuWLl2abWIxS0tLOnfuzL///suPP/7IkiVLcHBwQKVS0bp1a8aPHw+kH+uzatUqhg4dSkBAAOPHj8fIyAg7OztSUlL09k43aNDghZ4bIYT4LwlQhRAiH2ncuDF79+7lyJEjXLhwgdu3bxMeHk5MTAyWlpYULVqUSpUq0apVK9q0aZPlMk1jY2N+//13li9fzo4dOwgODkalUtGwYUMGDRpE/fr1OXz48Cu5n6+//pry5cvz119/cevWLVJTUylTpgzvv/8+gwYN4vr16zm29/DwYOfOnaxbt44DBw5w9+5d4uPjKVKkCKVLl6ZFixa65YoZtWzZkn379rFu3TqOHj1KYGAgsbGxWFpa8s4771C1alXee+89mjRpkut7WrRoET///DOHDx8mLCxMl2jmv0t5a9Wqxe7du/nnn384ePAgt2/fJjY2FnNzc8qVK4eHhwdNmjShRYsWuR5DdqpWrcqCBQt0GWMjIiKIiorCzMyMChUq0LBhQ/r27ZvjsSxZcXNzY8eOHaxevZr9+/cTGBhISkoKZcqUoUGDBgwcOJAyZcrk2X3kRrFixdi0aRPr169n165d+Pv7k5iYSIkSJXj33Xfp378/lSpVeqljsLCwoEaNGpw7dw7IenY0Y1nt2rWz/YKgWbNm/Pnnn/z6669cvHiRxMREnJycaNu2LYMHD+add97JcSzTpk2jRIkS7Nmzh6CgIN0S3idPnuhdV65cOby9vdm8eTN79+7Fz8+P6OhoTE1NcXFxoVKlSjRs2JDWrVvn6rkQQohnUSnPk4P8DXb69Gn++OMPrly5QkJCAs7OzrRp04YhQ4boJQ3JjT179vDnn39y48YN1Go1Li4udOrUib59+2ZKYJCRt7c3Xl5e+Pn56T74VKhQgfbt29OrV68c2wohhBBCCCHE26ZABahr165lxowZKIpC8eLFcXR05M6dO6SkpFCuXDnWrVtn8OHjWnPmzGHlypUAlClTBktLS+7cuUNaWhp16tRh5cqVmTJkKorC6NGj2bVrFwAODg44Ozvz6NEjXdbKmjVrsnLlyucOmoUQQgghhBCioCkwSZKuXbvGzJkzAfj+++85fPgwmzdvZv/+/Xh4eODv78/UqVNz1ee+fft0AejSpUvZt28f27Ztw9vbm1KlSnHu3Dnmz5+fqd3WrVvZtWsXKpWK6dOnc+rUKby8vDhy5AirVq3C2tqaS5cu6bIaCiGEEEIIIYQoQAHq0qVL0Wg0dO7cmV69eumy4xUrVoz58+djZGTE3r17s0zLnp0lS5YAMHjwYL09QOXKlWP69OkA/PXXXzx+/Fiv3cGDBwFo0aIFPXr00MvUV79+fQYNGgTwyvZ4CSGEEEIIIUR+UCAC1Pj4eI4dOwZAz549M9W7urrqkg/s3r3boD4DAgJ0wWyvXr0y1devXx8XFxdSUlI4cOCAXp02c2R2CSG0Z/BpMyYKIYQQQgghhCggAaqfnx8pKSmYmZlRrVq1LK/RngN45coVg/q8fPkykJ7eP7tshtn1qc0GeOnSpSzPGLtw4QJAtmMVQgghhBBCiLdRgQhQ7927B4Czs3O2mXG1s5naa58lICBAr11u+uzbty9Fixbl0qVLTJo0CX9/f5KTkwkNDWXJkiWsX7+eokWLMnToUIPGIoQQQgghhBBvgwJxDmp0dDQAhQoVyvYabZ322rzsU3vYt5ajoyP//vsv8+bNY8eOHXh5eenqVCoVvXr1YujQoQadM7dhwwb++ecfg8YcHByMlZUVtWrVYt68eQa1EUIIIYQQQog3RYEIULV7PnM6V1R7FIz22rzsMykpKVPdgwcPiIyMRK1WY29vT8mSJXnw4AEPHz5k3759uLm58fHHHz9zHJGRkfj6+ho0ZkgPrA2dJRZCCCGEEEKIN0mBCFDNzc0BUKvV2V6TkpKid21e9mlhYaFXfv78eQYMGIBKpeLHH3+kQ4cOurqjR48yduxYvv/+e9RqNf369ctxHE5OTnh4eBg0Zn9//yyDZSGEEEIIIYTIDwpEgGrI8l1DluxmZGdnZ3Cf2mu1Zs6cSXJyMqNHj9YLTgGaNGnCxIkTGT9+PEuWLOGjjz7SzcRmpXfv3vTu3dugMXfr1i1Xs61CCCGEEEII8SYpEEmSXF1dAQgNDc12xvP+/ft61z5L2bJlAQgMDMz2mqz6TEhI4Pr16wA0aNAgy3aNGzcGIDY2VpeMSQghhBBCCCHedgUiQK1UqRKmpqakpKTg4+OT5TXao11q1KhhUJ/Vq1cH0hMPPXjwwOA+ExISsjxaJjuG7okVQgghhBBCiIKuQASoNjY2NGrUCCDLjLcBAQGcPn0agDZt2hjUZ9myZXFzcwPg77//zlR/6tQpAgMDMTU1pUWLFrpyR0dH3ZLfkydPZtn3sWPHADA2NsbFxcWg8QghhBBCCCFEQVcgAlSAoUOHolKp2Lp1K3///bduFjMiIoIxY8ag0Who2bIlFStW1GvXvHlzmjdvzu7duzP1OXz4cACWLVvGwYMHdeV3795lypQpAHz00Uc4Ojrq6oyMjOjYsSMAv/zyCzt27NDr8+jRo8yaNQuAZs2aZdq/KoQQQgghhBBvK5WSm/Wob7hVq1Yxe/ZsFEWhRIkSODg4cOfOHVJSUihbtizr1q3TCyYB3N3dAZg1axbdunXL1OfMmTNZvXo1AGXKlMHKyorbt2+TlpZGrVq1+OOPPzJlBo6Li6Nfv35cvXoVQHfMTEREBJGRkUD6vtW1a9dStGjRPLt/bZIkDw8PvbNXhRBCCCGEECI/KBBZfLX69euHu7s7K1euxMfHh0ePHuHs7EybNm0YMmQI1tbWue5z0qRJ1KxZk3Xr1uHn50dERATlypWjU6dO9OvXL8tzUm1sbFi3bh1///03u3fv5vbt29y4cQNLS0uqVatGy5Yt+eSTT55rPEIIIYQQQghRUBWoGdS3ncygCiGEEEIIIfKzArMHVQghhBBCCCFE/iYBqhBCCCGEEEKIN4IEqEIIIYQQQggh3ggSoAohhBBCCCGEeCNIgCqEEEIIIYQQ4o0gAaoQQgghhBBCiDeCBKhCCCGEEEIIId4IEqAKIYQQQgghhHgjSIAqhBBCCCGEEOKNIAGqEEIIIYQQQog3ggSoQgghhBBCCCHeCBKgCiGEEEIIIYR4I5i87gEIIYQQQrxuffr04ezZswB89tlnjBkzJsvrDh06xOeff07JkiU5ePCgrnzChAls3ryZrl27Mnv27Ezt7t+/z5o1azh9+jQhISGo1WocHR1xcnKievXq1KlTh5YtW2JqaqrrK7eGDx/OiBEjct1OCCHeJBKgCiGEEEJksHbtWvr27UuRIkXypL/du3czbtw4kpOTMTY2pnjx4hQuXJiYmBj8/Py4du0af/31F0eOHKF48eK4urri6emZqZ9bt24RFxdHiRIlKFGiRKb6rMqEECK/kQBVCCGEEOL/GRsbk5CQwK+//sqUKVNeuL/Q0FDGjx9PcnIyHTp0YNy4cRQrVkxXn5CQwPHjx9m4cSMqlQqAzz//nM8//zxTX9pZ3u7du8tMqRCiwJI9qCLfSExV88O5nYw74cXFyPuvezhCCCEKoE6dOgGwYcMGQkNDX7i/7du3k5SUhIuLC3PnztULTgGsrKxo1aoVy5Yty1QnhBBvIwlQRb6x5e5lfrt2lHW3ztJp+1I+3LOck2H+KIryuocmhBCigKhSpQrvv/8+arWaxYsXv3B/wcHBAFSsWBFjY+MX7k8IIQo6CVBFvlHaxgEVKt3/Hwu9Q8/dy+i681cOBt+UQFUIIUSeGDVqFEZGRmzdupW7d+++UF/W1tYA+Pn5kZKSkhfDE0KIAk0CVJFvNHIuz1+tBuDpVEav/HxEIH33/UE77yXsDLiGRtG8phEKIYQoCMqXL0/Hjh1JS0tj4cKFL9RX06ZNgfQsvgMHDuTAgQPExcXlxTCFEKJAkiRJIl9pUrICjZ3LczLMn4VXDnIy/Ok321cfhTDk0J+42RdlWLVmdC5bDRMjWU4lhBDZSUxNISUt7XUPI9fMjI2xNDF7qY8xYsQIdu7cyZ49e7h+/TqVK1d+rn7q1atHnz59WLt2LWfPnuXs2bOoVCpcXFyoWrUq9evXp3Xr1tjY2OTxHQghRP4kAarId1QqFQ2dy9PQuTwXIgJZdOUQB4Jv6OpvRUXw5dG/mX9pH0OrvscH5T0xN5a3uhBCZDTtjDd/+J1Ekw+3RxipVPSv1IDv6nZ8aY9RunRpunfvzoYNG/jpp59YtmzZc/c1ZcoUGjduzJo1azhz5gxqtZqAgAACAgLw9vZmzpw5jB8/nu7du+fhHQghRP4kS3xFvlarqAur3+/H7k4jaO9aVW+PamDsY8af9KLhv3NZcf0Eiamy90cIIbRW+Z3Kl8EpgEZRWOV36qU/ztChQ7GwsODo0aOcP3/+hfpq2rQpK1as4Pz58/z1119MnDiRRo0aYWxsTHR0NJMmTWLnzp15NHIhhMi/JEAV+YYmOZ7wFQMJ/bkXiXfP6tVVKVyS35p9zMGuo+leribGqqdv7fCEGKad8abexjks8TlMbErSqx66EEK8cfpVqo+RSvXsC99Axioj+lWq/9Ifp1ixYnz00UcALFiwIE/6tLCwoHbt2vTr148VK1bg5eWFk5MTwAvvdxVCiIJA1j2KfCPm5J/EHFsFQNz5Tdg1HkCRD2ZgYueku6aCfVEWNunFmJot+eXqUf65fZ4UTfr+qkdJ8cy+sJtfrh6mf+WGDKzcEAdzq9dwJ0II8fp9V7cjE2q1lj2ozzBkyBD++ecfzp07x7Fjx/K8/4oVK/LFF1/w/fffExAQQExMDHZ2dnn+OEIIkV9IgCryDfNSVcDIGDRpoCjEHF1B3PlNFOn2A4WaDUGVYZ+pi21hZjfoypfVm/PbtaP8efMsSWlqAKJTklhw+QArfI8zoHJDBns0wl4CVSHEW8jSxAxL+SSQIwcHB/r378/ixYtZsGABw4cPz/PHKF26tO7PchSNEOJtJ0t8Rb5hWaEhpcbvx6xUFV2ZJiGKiD9HcP/bd0m8fSJTmxLWhfi2bkdO9xjP8GrvYWNqrquLVSez8MpB6m+cw/8u7SMqOeGV3IcQQoj8pV+/fjg4OHDt2jX27t2bq7aPHj165jUXL14EoFChQjg6Oj7XGIUQoqCQAFXkK1buTXD59jxOH/2EkeXTJVDJQVcImtGEsN8/JTUqLFO7IpY2TKjVhjM9JvB1zfcpZGahq4tVJ7Pg8gFdoBqdnPhK7kUIIUT+YGNjw5AhQwDYunVrrtr++uuv9O7dmy1bthAdHa1Xl5CQwKpVq1i+fDkA3bp1w8hIPpoJId5usrBH5DsqE1McWo3Etm4vHm6cSMzx1bq62JN/En9xK4W7TMO+5XBUJqZ6bQuZWzKqRgsGVG7IyusnWOZ7jOj/T5qkDVRXXj/BwMoNGVS5EYXMLV/pvQkhhHgzffzxx6xatYoHDx7kqp1KpeLSpUtcunQJlUpFyZIlcXR0JCYmhrCwMJKTkwFo3LgxX3755csYuhBC5CvyNZ3It0wKFaP4oJWUnnIccxdPXbkmKZbIDV8T+I0nCdcPZtnWzsyCUTVacKrHBL6q2RK7DDOqMSlJ/HT5APX/ncP8S/tlRlUIIQTm5uYMHTo01+3GjBnD8uXL6devH1WqVCEuLg5fX1/Cw8MpUqQIrVu3ZsmSJSxfvhxLS/lSVAghVIqSTw9BE5l069YNX19fPDw88PLyet3DeaUUTRrRR5bz8N8paOIf69XZvNsDp14/Ylq4dDatITo5kRXXT7D8+nFi/nMMTSEzCwZ5NGJg5UZ6gawQQgghhBAib0mAWoC8zQGqVlrcIx7+O4XoI8sgw1tbZWZF4U6TsW89GqMMiZL+61mB6mCPxgyo3FACVSGEEEIIIV4CCVALEAlQn0oKuEDEmhEk3T2jV25arAJFP16AdbU2ObaPTk5k+fXjLPc9Tqw6Wa9OG6gOrNwQWwlUhRBCCCGEyDMSoBYgEqDqUzQaYk6s5uE/E0mLjdSrs67ZEacP52NW9J0c+4hKTmD59ROsyDJQteSzKumBqnUOs7JCCCGEEEIIw0iAWoBIgJq1tPgoHm2eRtSBpaBodOUqE3Mc2o/Dsd04jMytcuzjSXICy32Ps+L6CeL+E6gWtrBmRLVmfOJeF4v/ZA0WQgghhBBCGE4C1AJEAtScJQf5EPHnlyTePKpXblLYBaeP5mHj2QWVSpVjHzkFqiWsCvFljeb0qlAbUyPjPB+/EEIIIYQQBZ0EqAWIBKjPpigKsWc2ELlhHGlRoXp1Vh4tKfrxQsycKz6znyfJCfx69Sgr/U6QmKrWq3OxLcxXNVvSuWx1jOXAdSGEEEIIIQwmAWoBIgGq4TSJsTzynsGTPQsgLUOAaWyCQ6tRFO40BSNL22f2E5EQy2KfQ/x18wwpmjS9Onf7Ynzt+T5tyng8c2ZWCCGEEEIIIQFqgSIBau6lhN4gYt0oEq7t0ys3ti+BU6+52Nb70KDgMiQuip8u72fjnYukZdjnClC9SCnGeraiqXMFCVSFEEIIIYTIgQSoBYgEqM9HURTiL24lYt0YUh8F6tVZujWmaJ9FmJeuZlBfd6MjmXd5P1vvXslUV7dYWcbXas27xVzzYthCCCGEEEIUOBKgFiASoL4YTXICj3f+yJMdc1BSMyRAUhlh3/wLCnf7DmNrB4P6uv44jP9d3MveIL9Mde+VdGOcZyuqFSmVV0MXQgghhBCiQChwAerp06f5448/uHLlCgkJCTg7O9OmTRuGDBmClVXOR4lkZ8+ePfz555/cuHEDtVqNi4sLnTp1om/fvpiaZj5WpE+fPpw9e9agvm/evPlcY8qKBKh5IyXiLpHrvyL+0ja9cmPbIhT5YCZ2jfujMjD50cXI+/x4cS/HQu9kqmvr4sFYz1a42RfLk3ELIYQQQgiR3xWoAHXt2rXMmDEDRVEoXrw4jo6O3Llzh5SUFMqVK8e6deuwt7fPVZ9z5sxh5cqVAJQpUwZLS0vu3LlDWloaderUYeXKlZiZmem1+eGHH7h+/Xq2fd66dYu4uDhq1qzJhg0bcn2f2ZEANW/F++wi4q/RqB/c1is3L1uHon0WYfnOuwb3dSLMn7kX9nAh8r5euQoV3crV4Oua71Pa1jFPxi2EEEIIIUR+VWAC1GvXrtGjRw8UReG7776jZ8+eqFQqHjx4wBdffIGvry+tWrVi8eLFBve5b98+hg8fjpmZGQsWLKBFixYA+Pv7M2TIEIKDg+nfvz8TJkwwuM+EhAQaNmxIQkIC06dPp0ePHrm+1+xIgJr3NOpkovYu5NG26SjJ8Xp1dk0GUOSDmZjYORnUl6IoHAy+ydyLe/B9HKZXZ2ZkzKeV6jOiWjMcLazzbPxCCCGEEELkJwXmkMalS5ei0Wjo3LkzvXr10mVLLVasGPPnz8fIyIi9e/dy48YNg/tcsmQJAIMHD9YFpwDlypVj+vTpAPz11188fvzY4D737NlDQkIClpaWtG3b1uB24vUwMjXHsf04XGddx7ZuL726mKMrCZhQkSf7f0ZJS31mXyqVihalK7Kr0wh+fe8jyhd6GtimaNJY5nuchv/OZfGVQySoU/L8XoQQQgghhHjTFYgANT4+nmPHjgHQs2fPTPWurq7Uq1cPgN27dxvUZ0BAgC6Y7dWrV6b6+vXr4+LiQkpKCgcOHDB4rNqZzZYtW2JjY2NwO/F6mTqWosQX6yg1/gBmparoyjUJUUT+OZLAabVJuHnUoL6MVEZ0KFuN/V1GMa/RB5SwKqSri1UnM+fiHhpv+pE/b54h9T9nqwohhBBCCFGQFYgA1c/Pj5SUFMzMzKhWLevjQGrVqgXAlSuZj//IyuXLlwEoXbo0xYplncQmt30GBwdz7tw5ALp3725QG/Fmsar0Hi7fXcDp4wUYWdrpylOCrxI8qxlhv36C+kmIQX2ZGBnTq0Jtjnb/mkm121LIzEJX9yAxlgknN9NiywJ2BlyjgKzEF0IIIYQQIkcFIkC9d+8eAM7Ozllm1YX0BEcZr32WgIAAvXZ50eeWLVtQFAVnZ2fdjK7If1TGJji8PwLX2Tewa9xPry729HoCJlTi8c4fUVINW6ZraWLK0KpNOfHBOL6o0hRzYxNdnX90JEMO/UnnHb9wOvxuXt6GEEIIka+sWLECd3d3tm3b9uyLX4GrV6/i7u7OxIkTX/dQhChQTJ59yZsvOjoagEKFCmV7jbZOe21e9hkTE/PM/hRFYfPmzQB07txZt0f2WTZs2MA///xj0LX+/v4GXSfyhkmhYhQfuIJCTQcT8edIkgMuAKAkx/PwnwlEH/2Dop8swLpKK4P6sze3YnKdtvSvVJ95l/ex8c5FNP8/c3ox8j4f7PqdlqUrMqFWGyo6FH9p9yWEEG+jrI6IMzY2xs7OjooVK9KpUye6dOmCUQ7HjB05coRdu3Zx8eJFHj58SEpKCvb29lSsWJH33nuPjh075vi5Ijv3799nzZo1nD59mpCQENRqNY6Ojjg5OVG9enXq1KlDy5Yts/2SHkCj0dCiRQtCQ0MxNTXl+PHjOZ5s4OXlZVDgtWXLFoYNG0ZIiGGrhzJas2YNdevWNejax48f88svv1CuXDk6dOigV/fkyRP279/PyZMn8fX1JSwsDCMjI0qUKEGjRo3o168fpUplffZ4dkcDmpmZ4eTkhKenJ3379s1yhV7VqlVp1qwZW7Zs4dNPP6VixYoG3YsQImcFIkBNTk4GyPEXs/YoGO21edlnUlLSM/s7e/YswcHBQHq2XUNFRkbi6+tr8PXi1bMsX48y35wi+uhKHv47GU3cIwDU4TcJ+V9bbGp1wan3PEydXA3qz9nGnnmNejDYozFzLuxhX5Cfrm5/0A0OBN3kg/I1+bpmK0ra2L+EOxJCiLdXiRIlKFGiBJD+WSAwMJBTp05x6tQpdu3axdKlSzN9NoiIiGDUqFFcuJD+RaWFhQWlS5fG3NycyMhIjh07xrFjx1i0aBELFy6kfv36Bo9n9+7djBs3juTkZIyNjSlevDiFCxcmJiYGPz8/rl27xl9//cWRI0coXjz7Ly9Pnz5NaGgoAGq1mh07dvDxxx8/8/HNzMyoUqVKtvVWVlZUqVIly+1QFy9eBMDNzS3LvBu2trbPfHytpUuXEhsby9SpUzN9STBs2DDdc29tbU25cuVISkoiKCiItWvXsmnTJhYuXEiTJk2y7T/j6w4QFRVFcHAw3t7e7Nixg+nTp2e5PWvYsGEcOnSIuXPn6o4lFEK8mAIRoJqbmwPpv3Czk5KSondtXvZpYWGR7TVa2tnT2rVr57hs+L+cnJzw8PAw6Fp/f3+DgmWR91RGxti/Nxjb2t156PUN0Yd+A0UDQNyFLcT77Max/Xgc2o3FyMzSoD4rOhTnj5afcib8HjPP79KdoaqgsPHORbbd86FfpQYMr/YeDuZWL+3ehBDibdK9e3dGjBih+//U1FSWL1/OTz/9xNGjR1mzZg0DBw7U1UdGRtKzZ0/CwsIoWbIkX3/9NS1bttQ7Iz0gIID169ezfv16bt68aXCAGhoayvjx40lOTqZDhw6MGzdOLxBMSEjg+PHjbNy48Zkrs7RJGu3s7IiJiWHz5s0GBahOTk6sX78+x2sWLVqUZbm7uzsAU6ZMMXimNCtxcXFs2rQJW1tb2rRpk6ne2NiYDh060Lt3bzw9PTE2NgYgPDycSZMmceLECUaPHs2ePXsoUqRIlo/x39cd0mdmp02bxp49e/jhhx9o0aJFplnnqlWr4ubmxokTJ/D396dcuXLPfZ9CiHQFYg+qIct3DVmym5GdnZ3BfWqvzU58fDx79uwBoGvXrgY9vlbv3r3x8vIy6Ed+Kb5+xjaOFOu7hDLfnsOiQkNduaJO4tGW7wiYVIW4i1tzlfSobvGybGn/Bcub99E7miY5LZXfrh2l4b9z+dnnMImp2X+ZIoQQ4vmYmJjw+eef89577wFk2v84btw4wsLCcHV1ZePGjbRr104vOIX00wQmTpzIxo0bc/Ul9fbt20lKSsLFxYW5c+dmmqW0srKiVatWLFu2LNuEjpAe4O3fvx+A7777DiMjI65evcqdO3cMHsvrtG3bNhISEmjVqlWWEw2LFi1i3rx51KlTRxecAhQvXpyFCxfi6OhIXFwc27dvz9XjOjg4MHPmTIyMjEhMTNTNCP9Xp06dgPRtWUKIF1cgAlRXV1cg/ZvG7GY879+/r3fts5QtWxaAwMDAbK8xtE/t2adWVlZy9ulbwsKlBqUnHaH4kNUYF3q65Cr1YQChi7oRMr89KeG3DO5PpVLRxsWD/V1GMbdhN4pZPf1SJCYliVkXdvOe1zy8/C+h+f+ZWyGEEHlHOwOoTaIIcP78eU6ePAnAjBkzKFy4cI59uLu707x5c4MfU7s1qGLFinqBV27t2rWLxMREypQpQ7t27XT3ol3d9abbsWMHQLbPnYODQ7ZtbW1tqVGjBmB4UsuMbGxsdBMR2X3GbNGihd44hRAvpkAEqJUqVcLU1JSUlBR8fHyyvEa7N0H7S+pZqlevDqT/4/DgwYMX6lP7D0CrVq2wtrY26PFF/qdSqbBr8Amus/1waDMGMmTnTbi6h4DJ1Yj8ZyKapDiD+zQxMuYjt3c53v1rJtRqg12Go2lC4qMYefRvOm5fypnw3P8jLIQQInsaTeYv/7y9vYH0ALJ27dp5/pjazwza4/Sel/ZzSMeOHYH0ZI2QPjOZlvZmn7ednJys+2yX3VGChvQBYGlp2BabjIKCgoiKigLgnXfeyfKasmXLYmdnx6NHjyRhpRB5oEAEqDY2NjRq1Aggy4y3AQEBnD59GiDLvQtZKVu2LG5ubgD8/fffmepPnTpFYGAgpqamum/OshIUFKQ7+zS3y3tFwWBsaYdT7x9x+f4SVpUzvFfS1DzZOZeAiZWJOb0hV8t+LU3MGF7tPU50H8tgj0aYGj39Zv3Kw2C67/qNQQfWcjf6YV7eihCigNEkJ5AWH5XvfjTJCa/8udJmes24akq75LNOnTov5TGbNm0KpK/YGjhwIAcOHCAuzvAvNbVttV+oa5eitmrVCktLSyIiIjhx4kTeDjqPXb16lZSUFIoWLUrRokVz3f7Bgwe61y43XyJERUVx4sQJhg0bBsD7779PhQoVsrxWpVJRtWpVAN1nPiHE8ysQSZIAhg4dyuHDh9m6dSuenp707NkTlUpFREQEY8aMQaPR0LJly0wpwLXLRcaNG5cpeB0+fDgjR45k2bJlVKlSRXft3bt3mTJlCgAfffQRjo6O2Y5Le/ZpyZIlXyhBgMj/zEtWpuTYPcSd9yJy/VekPg4CIPVJCOG/fkz0od8p+slCzEtXNbhPBwtrpr3bgb4V6zHr/G52Bl7T1e2+78v+ID/6VqzH6BotcLCQ2XshxFMRf40mav8SXUK3fEVlhH3L4RT9+KeX/lCpqamsWLGCI0eOAOgdcaJdYVW6dOmX8tj16tWjT58+rF27lrNnz3L27FlUKhUuLi5UrVqV+vXr07p16ywz5GppkyPVqFFDF1xbW1vTsmVLvL292bx5c47ZbUNCQnTJjv5r+PDhmRIL5TXt8TXPE5wC/PDDD6jVasqXL0+zZs2yvW7JkiUsWbIkU7mdnR1fffUV/fv3z/FxtOPTZkoWQjy/AhOgVqtWjQkTJjB79my++eYbfvnlFxwcHLhz5w4pKSmULVuWH374IVM77S++hITM38a2bt2aTz/9lNWrV/PFF19QpkwZrKysuH37NmlpadSqVYuvvvoq2zEpisKWLVuA9NlTQ88+FQWXSqXCtk53rKu15fH22TzZ9SNKavqyrcSbRwicVgv7FkMp3OVbjK3tDe63rF0Rfm/+CeceBPD9uR1civz/4FfRsNLvJJv8LzKyenP6VWqAuXGB+WsvhHgBUQd+zp/BKYCiIerAzy8lQN20aZNuX6n2mBntrGWjRo349NNPddfGx8cD6cmKXpYpU6bQuHFj1qxZw5kzZ1Cr1QQEBBAQEIC3tzdz5sxh/PjxWR6BoiiKLqmTdvZUq0uXLnh7e3PgwAFiY2OzPfIlp2NmMh7L8rI8efIEIMczW7Pz+++/s2/fPkxNTZk9e3aO+3j/e8xMYmIiISEhxMTE8M8//1ChQoUcA1xtEs5Hjx7lepxCCH0F6pNqv379cHd3Z+XKlfj4+PDo0SOcnZ1p06YNQ4YMea79n5MmTaJmzZqsW7cOPz8/IiIiKFeuHJ06daJfv345npOqPftUpVLRpUuXF7gzUdAYmVtRpPv32DXqS+S6McRf+f/ECpo0ovYtJvb0Bor0nIVdw09R5XAo/H/VKebKtvZD2XbPh1kXdhEcFwVAdEoSP5zbyWq/00ys3YYOrlXlCxMh3nL2LYbl3xlUI2PsWwx7KV2HhYURFhYGpB9fYmtrS7169ejQoQPdu3fXO4PT2tqa6OjoLL/kzktNmzaladOmJCUlce3aNa5du8axY8c4deoU0dHRTJo0CUtLS9q1a6fX7vTp04SEhGBqapopSWP9+vVxcnIiMjKSHTt20Lt37ywf25BjZl4m7f7R/2ZGfpbNmzczf/58VCoVM2bM0C3BzU5Wx8xoNBq2bdvG5MmTGTZsGMuWLaNhw4ZZttceOagdrxDi+RWoABXSf+Hm5gDsmzdvPvOatm3bPlf23bp16xrUv3h7mRUrT8nR24i7vIPIdaNRR6QnV0iLjeTBikFEH1pG0T6LsChr+L4ZlUpF53eq07pMZVb6nWTxlYPEqtP/wbwf95gvDq9juVMZvnm3PbWKuryU+xJCvPmKfvwTRT6YoVvFkZ+oTMwweknnP+dm2WqxYsWIjo7WZdvNjevXr2e5sqty5cpMnTo1yzYWFhbUrl2b2rVr069fP27cuMGgQYOIjIxk4cKFmQJUbXKkRo0aZdqOZGxsTMeOHVm5ciVbtmzJNkB93bQzpzExMQa32blzJ5MnT0ZRFL799ltdUqjcMjIyokuXLvj5+bFq1SrmzZuXbYCqTaT0PDO9Qgh9BS5AFSI/sqnRHqvKLXiyez6Pt89ESUkEIOnuGe5/X49CTQdRpPt0jG2zPmA8KxYmpgyt2pTeFWoz//J+1t44Q9r/z5RciLxP5x2/0NG1GhNqt8bFNuejEYQQBZORuRW8pEDvbeDp6cmtW7d0SXhyIzY2NstzNU1MDP9oVrFiRb744gu+//57AgICiImJ0R2JEh8fz759+wA4dOhQtvtIAS5dusS9e/d0R+y9SbRH9+R0Ln1G+/btY+zYsaSlpTF+/Hg+/PDDFx6Dp6cnq1at0mVTzmo2VxugPuuoISHEsxWILL5CFARGZhYU7jQJ11nXsanzwdMKRSH68DLuTahE1MFfUTS5OxLA0cKa6fU6c7DraFqVrqRX5x3gQzOv+fxwdgfRyYl5cRtCCPHW0CZMunHjBufPn89VW+0qq//+rF27Nlf9ZEzQlPEomt27d5OQkICJiQlFihTJ9sfc3BxAlzPjTVO5cmUg/Vz67M4h1Tpy5AijR48mNTWVkSNHMmDAgDwZg/aIIY1Gk+1MrvZ4Ge14hRDPTwJUId4wpoXL4Dzsb0qN24uZ89OAUhP/mIg1w7j/XV0Sb5/Mdb/lCjmxsuWn/NNmMFULl9SVp2jS+M33GA03/cgqv1Ok5jIAFkKIt1WdOnWoV68eAJMnT35mgpxbt25x8OBBg/s3JOGOdha2UKFCest4tct7u3btyokTJ7L9GTNmDABbt27N8qzX183Z2ZmSJUuSkpLCjRs3sr3u1KlTjBgxArVazWeffaY7HiYvaI/psbGxwcHBIVN9XFwc/v7+GBsbU6tWrTx7XCHeVhKgCvGGsqrcApfvL+HU+38YWTzNrpgceImgGY0JX9af1KjwXPfboEQ5dnQcxoLGPSlhVUhXHpWcwJTTW2m9dRFHQ27nyT0IIURB9+OPP1KsWDECAgLo0aMHO3fu1JvJhPQz0efMmcMHH3zA/fv3De77119/pXfv3mzZsiXTEteEhARWrVrF8uXLAejWrZsugVNQUJBuRvdZSRo7duyIiYkJYWFhujPj3zTaY3C0geJ/Xbp0iaFDh5KcnEy/fv10QfeL0mg0bNq0SZckqnPnzllmAr5w4QIajYaaNWvmeOSPEMIwsgdViDeYysQUhzajsa3Xm8h/JhB78k9dXcyJNcRd3ELhLt9i32IoKpPsM0r/l5HKiA/Ke9LetQrLfU+wxOcQ8f+fKOVm1AM+2ruC90tXYmqd9rxTyPB9r0II8bYpWrQoGzdu5Msvv+TSpUuMHj0aS0tLSpcujbm5OZGRkYSHp3+ZaG9vn+Ne0P9SqVRcunSJS5cuoVKpKFmyJI6OjsTExBAWFqbLGNu4cWO+/PJLXbvNmzejKAplypShdu2ck+wVLlyYxo0bc+jQIby8vGjQoMFzPAsvV8+ePVm/fj3bt2+nX79+meonTJhAQkICxsbG+Pj4ZLvvNKcEVBmPF4L0Y2aCg4OJjY0FoFatWtkGvtu3b9eNUwjx4iRAFSIfMLEvQYkhq7F/bzARa0eSHHQFAE1iDJHrxxB9dAVFP1mIVaXsz2jLiqWJGSOqN6NXhdrMubiHf25fQEEBYF+QH4dDbjGgUgO+rNECOzOLPL8vIYQoCIoVK8aGDRs4fPgwO3fu5NKlSwQHB6NWq7G3t6dJkyY0a9aMTp065WqGbcyYMTRu3Jjjx49z4cIFgoKCCAsLw9TUlCJFilClShU6duzI+++/r2uT8Qx2Q7PXdu3alUOHDrF//37i4uLeuFnAypUrU61aNXx8fLh79y7vvPOOXr12b2paWlqWiae0ckpAlfF4Ie21dnZ2NGjQgHbt2tGtW7csZ08TEhLYv38/9vb2tGnTJre3JoTIgkpRFOV1D0LkjW7duuHr64uHhwdeXl6vezjiJVHSUok+vIyHm6agSYjSq7N5twdOvf+HqWOp5+rb52Ew357dztkHAXrlhS2sGefZmt4VamOci3NZhRBCiLxw5MgRhgwZQq9evfj+++9f93B0Vq1axaxZsxg7diyDBg163cMRokCQALUAkQD17ZIaE8nDfycTc2wlZPhrrDKzonCnKTi0GY3KJHcHm0P6t+/e93yYcX4XIfFRenUejiX4tm5H6hd/J+vGQgghxEvSv39/zp07x549eyhZsuSzG7xkiYmJtGzZEnNzc3bv3p3l8TNCiNyTALUAkQD17ZR492z6st975/TKTYu7UfSThVhXafV8/aaq+e3aUX6+epjEVP3U/u1dqzK5dlvK2Dpm3VgIIYTIY/7+/uzcuZP69es/c2/tq3Dnzh127dr1xoxHiIJCAtQCRALUt5ei0RBz7A8e/juJtNiHenU2tbrg1Hsepk6uz9V3aHw0sy/sxsv/kl65ubEJQzwaM7zae1ibmj/v0IUQQgghhNCRzWRCFAAqIyMKNR2I6yw/CrUYCqqnf7XjLmwhYJIHj7ZOR5OSlOu+na0LsahJL7a2H0qNIk8PhE9OS2WxzyGabPofG29fQKO8eefnCSGEEEKI/EUCVCEKEGMbR4r1WUyZb89hUaGhrlxRJ/Fo8zQCJ1cl7vL25+q7VtEybOvwBQsa96SYlZ2u/EFiLKOPb6Tj9qVciAh84XsQQgghhBBvLwlQhSiALFxqUHrSEYoPXoWxXTFduTryLqELOhPyU0dSIvxz3a/2/NSj3b5iZLVmmBs/Tdl/5WEwnXf8wogjGwhPiMmT+xBCCCGEEG8XCVCFKKBUKhV2DfvgOtsP+1ZfgtHT89vir+wkcFJVHnpNQ5OckOu+rU3NGVerNYe7jqGDa1W9us13L9N00//49epRUtJSX/g+hBBCCCHE20MCVCEKOGOrQhT9aD4u31/E0r2prlxJTebxtukETPIg9rwXz5MvrbStI782+5h/2w7Bw7GErjw+NYXp53fSautCjobczpP7EEIIIYQQBZ8EqEK8JcxLVaHUhAMU//wvjO2ddeWpj+4TtqQHIfPakhJ+67n6rlf8HXZ2HMHs+l2xN7fSld+JjuSjvSsYfHAtwXFPXvgehBBCCCFEwSYBqhBvEZVKhV293pSd7YdDu7FgbKqrS7i2j4DJ1Xj472Q0yfG57tvYyIhPKtblWLev6ONeFxUqXd2uQF+aes3jp8v7M52pKoQQQgghhJYEqEK8hYwsbHDqORvXHy5j5dHyaUWamsfbZxMw0YPYc/8+17JfBwtrZjXoys6Ow6nlVEZXnpyWyrxL+2mx+Sf23r/+XH0LIYQQQoiCTQJUId5iZs4VKfn1bkoM+wcTx6dnnKY+DiLs516E/K81KaE3nqvvqkVKsrn95yxo3AMnSxtd+f24xww4sIY++/7gbnTkC9+DEEIIIYQoOCRAFeItp1KpsK3THddZvjh2mIjKxExXl+B7gICpNYj8ZwKapLhc951+LE0tjnT7miEejTBRPf2VczjkFi22LGDW+d3Eq5Pz5F6EEEIIIUT+JgGqEAIAI3NrinwwHZfpV7Cq0uppRZqaJzt/JGBiZWLP/vNcS3PtzCz45t0O7O3yJY1KlNeVqzVp/Hz1ME295rH17hVZ9iuEEEII8ZaTAFUIocesuBslv9pJiRH/YlL46R7S1CchhC39kOC5rUgO9Xuuvt3si7G+9UB+bfYxztaFdOXhCTEMO7KeHrt/x+9x+AvfgxBCCCGEyJ8kQBVCZKJSqbCt1RXXmb44dpyst+w30e8ggVNrELlhHJrE2Ofqu4NrVQ53/YovqzfHzMhYV3c6/B5tti1i2hlvYlOS8uRehBBCFAwrVqzA3d2dbdu2ve6hAHD16lXc3d2ZOHHi6x5KrvTp0wd3d3fOnDmT67YTJkzA3d0dLy+vlzAywzRv3hx3d3eCg4Nf2xgM8SLP89vO5HUPQAjx5jIyt6JI9++xa9iHiHWjSPDZnV6RlsqT3fOIOb0ep94/Ylu3FyqVKufO/sPK1Iyxnq3oUb4W353dzr6g9FnZNEXDiusn2H7Ph2/e7UCnstVy3bcQQuRWnz59OHv2rF6ZsbExdnZ2VKxYkU6dOtGlSxeMjLL/bv/IkSPs2rWLixcv8vDhQ1JSUrC3t6dixYq89957dOzYkUKFCmXbPjv3799nzZo1nD59mpCQENRqNY6Ojjg5OVG9enXq1KlDy5YtMTU1zbYPjUZDixYtCA0NxdTUlOPHj2Nvb5/t9V5eXgYFXlu2bGHYsGGEhITk+r7WrFlD3bp1Dbr28ePH/PLLL5QrV44OHTro1T158oT9+/dz8uRJfH19CQsLw8jIiBIlStCoUSP69etHqVKlsuw3q9cdwMzMDCcnJzw9Penbty/VqlXLdE3VqlVp1qwZW7Zs4dNPP6VixYoG3cub6syZM5w9e5ZKlSrRsmXLZzcQr9yqVauIjY2la9eu2b6nCwIJUIUQz2RWvAIlR28n/tI2ItaNIfVhAABpUaGE//ox0UeWU/STRZiXrJzrvl3tCvNHy085EHSDaWe8CYh9BMCDxFiGHVnP+lvnmFG/M+UKOeXlLQkhRJZKlChBiRIlAEhOTiYwMJBTp05x6tQpdu3axdKlSzMFghEREYwaNYoLFy4AYGFhQenSpTE3NycyMpJjx45x7NgxFi1axMKFC6lfv77B49m9ezfjxo0jOTkZY2NjihcvTuHChYmJicHPz49r167x119/ceTIEYoXL55tP6dPnyY0NBQAtVrNjh07+Pjjj5/5+GZmZlSpUiXbeisrK6pUqUKxYsUy1V28eBEANzc3bGxsMtXb2to+8/G1li5dSmxsLFOnTs30JcGwYcN0z721tTXlypUjKSmJoKAg1q5dy6ZNm1i4cCFNmjTJtv+MrztAVFQUwcHBeHt7s2PHDqZPn0737t0ztRs2bBiHDh1i7ty5rFy50uD7eZ1KlChB2bJlsbS01Cs/e/YsS5YsoWvXrtkGqE5OTpQtWzZXr93bKrvn+UWsWbOGkJAQ3n33XQlQhRBCpVJh49kZqyqteLxjDk92zEVJTc++m+h3iMBvauLQahSFO03ByDL3/3C1KF2RRs7l+fXqERb5HCI5LRWA42F3aLllAV9UacKI6s2wzLDcWAgh8lr37t0ZMWKE7v9TU1NZvnw5P/30E0ePHmXNmjUMHDhQVx8ZGUnPnj0JCwujZMmSfP3117Rs2RIzs6e/qwICAli/fj3r16/n5s2bBgeooaGhjB8/nuTkZDp06MC4ceP0AsGEhASOHz/Oxo0bn7nSRLsk087OjpiYGDZv3mxQgOrk5MT69etzvGbRokVZlru7uwMwZcoUg2dKsxIXF8emTZuwtbWlTZs2meqNjY3p0KEDvXv3xtPTE2Pj9K0j4eHhTJo0iRMnTjB69Gj27NlDkSJFsnyM/77ukD4zO23aNPbs2cMPP/xAixYtMs06V61aFTc3N06cOIG/vz/lypV77vt8VebOnfvcbb/66iu++uqrPBxNwfUiz/PbTvagCiFyxcjMkiJdv8Vl5lWsq7V9WpGWypNd/yNgksdzZ/s1NzbhyxotONh1NM1LuevK1Zo0Fvkcovnmn9h3/3pe3IYQQhjExMSEzz//nPfeew8g0/7HcePGERYWhqurKxs3bqRdu3Z6wSmAq6srEydOZOPGjZQpUwZDbd++naSkJFxcXJg7d26mWUorKytatWrFsmXLspzB1IqLi2P//v0AfPfddxgZGXH16lXu3Llj8Fhep23btpGQkECrVq0wNzfPVL9o0SLmzZtHnTp1dMEpQPHixVm4cCGOjo7ExcWxffv2XD2ug4MDM2fOxMjIiMTERN2M8H916tQJgA0bNuSqfyFE1iRAFUI8F7Oi5XAe7Y3zl5sxKeyiK9dm+w35sTUpoTeeq28X28KsbtmP5c376GX7DYp7Qv8DaxiwfzVBsY9f+B6EEMJQ2hnAgIAAXdn58+c5efIkADNmzKBw4cI59uHu7k7z5s0NfkxtEpiKFSvqBV65tWvXLhITEylTpgzt2rXT3cvmzZufu89XaceOHQDZPncODg7ZtrW1taVGjRoA3Lt3L9ePbWNjg52dHZC+NDorLVq00BtnXjty5AjDhg2jUaNGVKlShYYNG/Lhhx+yYsUKYmOfJis8c+aM3nts48aN9OjRA09PT9zd3YmJiQGyTt7j7u7OkiVLgPT3hbu7u+6nT58+uuuelSQpODiY6dOn07ZtW2rUqIGnpyft27fnu+++4/p1/S+Yb926xZIlS/jwww9p0qQJVapUoW7dugwYMIA9e/bkzZP3/7y8vHT3kpqayu+//067du2oVq0a9evXZ8yYMQQGBmbbPiUlhVWrVvHBBx/g6elJtWrVaNOmDXPmzOHx46w/j2SXJGnx4sW4u7szYcIE1Go1v/32G23btqVq1arUr1+fsWPHEhYWluX4tXu9+/btq/cavc6kVS+DBKhCiOemUqmwqdkJ15nXcOw0RS/bb8L1AwRMrUHkPxPRJMU9V99tXDw43PUrhlZtionq6a+rvUF+NNv8E0t8DpHy/0uBhRCvn5KWiiY5HvWTEJKDr6F+EoImOR6lAPw91Wg0mcq8vb2B9ACydu3aef6Y1tbWAPj5+ZGSkvLc/WgD0Y4dOwLQuXNnIH1mMi0t7QVH+XIlJyfj4+MDkGWiIkP7AJ5rL2BQUBBRUVEAvPPOO1leU7ZsWezs7Hj06BH+/v7PNcaspKamMnbsWIYMGcL+/ftRq9W4u7tjYWGBj48Pc+fOzRT0aX377bdMmTKFBw8e8M477+SYEAvA09NTtwe3cOHCeHp66n7c3NwMGu++ffvo0KEDa9euJSgoiNKlS1OqVCnCwsJYt24da9as0bt+5syZLF68mFu3bmFlZYW7uzvm5uacOHGCkSNHMmfOHIMeNzcURWHEiBHMmzeP5ORkypcvT3x8PDt27KBr166691pGMTExfPzxx8yaNYurV69StGhRypUrR3BwMCtXrqRTp07cvHkz12NRq9UMGjSI+fPno9FocHV1JTY2lm3btvHhhx/q3nfw9DXRrs5wc3PTe42e9eVYfiN7UIUQL8zI3Ioi3b5Lz/b750gSrv7/N59pap7snEvs6XU4fTgPm9rdnyvb76TabfmgvCeTTm3hdHj6N+BJaWpmX9jDv3cuMqNeZxo6l8/r2xJC5IImOZ64S9482fkjyfcv68rNy9TAod1YbGp2xMjc+vUN8AVpM726urrqyrRLPuvUqfNSHrNp06asXLmS+/fvM3DgQPr160fdunWzTDiUnfv37+sSCGmXorZq1YrvvvuOiIgITpw4kWPyoNft6tWrpKSkULRoUYoWLZrr9g8ePNC9drn5EiEqKgpfX19dkPT+++9ToUKFLK9VqVRUrVqVEydOcO7cuTzbh7pgwQK2bduGtbU1P/zwA23bttUliNIuWc5qT214eDibN29m8eLFtGrVCkifATQxyf5j//r161m8eDFLliyhSZMmzJ49O1djvXHjBmPGjCElJYUePXrw9ddf6wXFZ86cITxc/5zz3r17M378eCpVqqRX7uvry5gxY1i5ciXvv/8+np6euRpLTi5fvoypqSnLli3Tve+jo6MZO3YsR44cYcyYMezYsUNvKfn333+Pj48PJUqU4Oeff8bDwwNI338+evRozp07x8iRI/H29s60vD8ne/bsoWTJkmzbtk23Xzs0NJRBgwbh7+/PH3/8wejRo4H03wVNmzalefPmhISEvPC+7jedzKAKIfKMWbHylByzA+cRmzAp/HSfVerjYMJ+7kXI/9qQEpb7bxkB3OyLsbHNEBY26UURi6cfzu5ER9Jrz3KGH9nAg4SYF74HIUTuaZLjidwwlvBfP9YLTgGS718m/NePifx7HJrk+NczwBeQmprKb7/9xpEjRwD0jjh58OABAKVLl34pj12vXj3d8sqzZ88ydOhQateuTevWrfn666/ZtGkTcXE5r1DRLv2rUaOGLri2trbWZWl91jLfkJAQvaWEGX8WL178gnf4bNoljc8TnAL88MMPqNVqypcvT7NmzbK9bsmSJXr3pl1qGhYWxldffcVPP/2U4+Nox6fNlPyiIiMjWb16NZCebKd9+/Z62YttbGzo3bt3lsFwWloaI0eO1AWnkJ6NOacjkl7UwoULSUlJoWXLlkyfPj3TjG3dunV1M/dabdq0yRScAnh4eDBt2jQAtm7dmqfjVKvVDB8+XO9LmUKFCjFv3jxsbGwICgpi165durqgoCDd0u3p06frglNITyC2cOFCLC0tCQgIYOfOnbkey5w5c3TBKYCzs7MuKD18+PDz3GKBIDOoQog8pVKpsKnVJT3b7/ZZPNn1P5TU9KVpCb77CZhSHce2X+HYcVKuZ1NUKhXdy9WkZamKzL24lzU3TqOQnoxpy93LHAjyY6xnK/pWrIeJ0fPv1xJCGE5JSyXukjfRh37L8brog79i6d4E29rdURm/uR8/Nm3apNtXqj1mRhsENmrUiE8//VR3bXx8esBtZWX10sYzZcoUGjduzJo1azhz5gxqtZqAgAACAgLw9vZmzpw5jB8/PssjUBRF0SV10s6eanXp0gVvb28OHDhAbGxstseG5HTMTMZjWV6WJ0+eADxziWpWfv/9d/bt24epqSmzZ8/OcR/vf4+ZSUxMJCQkhJiYGP755x8qVKiQY4CrPd/20aNHuR5nVg4fPkxKSgply5Z9rjNJu3btmifjMERSUhLHjh0DYPDgwblqGxkZyY4dO7h69SqPHj3SLcfWLmn38/PL07GamprSq1evTOW2trZ07tyZv/76i6NHj9KlSxcAjh8/jkajoXz58jRq1ChTu8KFC9OpUyf+/vtvjh07pmtniIoVK+r2R2dUvXp1IH31w9vqzf0XQgiRrxmZW1Gk+w9Pl/1e25dekabm8fbZxJxah9NH87Hx7JLrZb+FzC2ZUb8zvSrUYuKpLVx5mJ5IJFadzDdnvPnn9gVmNuiCp5Ph2TKFEM9HSU3myU7DjlN4svNHbGp0eKMD1LCwMF2CEmNjY2xtbalXrx4dOnSge/fuerNQ1tbWREdHk5CQ8FLHpF3el5SUxLVr17h27RrHjh3j1KlTREdHM2nSJCwtLWnXrp1eu9OnTxMSEoKpqSlt27bVq6tfvz5OTk66AKF3795ZPrYhx8y8TNqAJTdLJyF9Znj+/PmoVCpmzJhB1apVc7w+q2NmNBoN27ZtY/LkyQwbNoxly5bRsGHDLNtbWFjojfdFafey1qxZM9dtHRwccHR0zJNxGCIwMBC1Wo2JiUmOZ+b+186dO5k8eXKOf38y7sPMC8WLF892ibx2NjpjMi3tn8uXz34bkXaP7t27d3M1FhcXlyzLtcu2X/bvlTeZLPEVQrxUZsXdKPnVLkoM34iJ49NlcKmP7hO2+ANCfupAyoPnO+qgWpFSbGs/lFn1u1DIzEJXfu1xKJ23/8KkU1uISUl64XsQQmQvLSGK5PtXDLo2OfASaQlRL3dAL2j48OHcvHmTmzdvcv36dc6cOcPq1avp0aNHpiWS2qNdtNl2c+P69et8+OGHmX5++OGHbNtYWFhQu3Zt+vXrx4oVK/Dy8sLJyQlIX2L5X9rlu40aNcoUsBgbG+uSJm3ZsiXX439VtDOn2gy0htAGPoqiMG3atExLSw1lZGREly5d+OSTT0hLS2PevHnZXqsNpJ5npjcr2ln73Ow31nqZM/pZ0Y7V0tIyx32uGQUFBTFu3DgSEhL4+OOP2bhxI+fOneP69evcvHlTdyxSamreJljLKZmQNjDUrozI+Ofszs/Nrp0hsnudXuZS7Pzizf0KUwhRYKhUKmxrd8O6amsebZvBk93zIS09XX+Cz24Cr1fDof04HNuPx8gsd1kWjY2M6FOxHm1dqjDj/E423klPWqKgsObGaXYH+vJ93Y60d62a65laIcSzaeKf5O76hChwKPlyBvOKeXp6cuvWLV0SntyIjY3N8lxNQz/gQ/oSwS+++ILvv/+egIAAYmJidEeixMfHs29f+sqVQ4cO6e1z+69Lly5x7949ypYtm8u7ePm0AUV0dLRB1+/bt4+xY8eSlpbG+PHj+fDDD194DJ6enqxatUqXTTmr2VxtgJpX2VS1gemz9hi/CbRjTUxMJDU11aD38K5du1Cr1bRu3ZpvvvkmU712aXdey2kJ9sOHD4Gn2bMz/llbZ2g78WIkRBdCvDJG5tY49ZiJ6w+XsarcQleupCbzeOsPBE6uStzl5ztHroilDT817smmtp/hZv80mUZEYiyfH17Hp/tXydmpQrwERtbZn0GZ5fVW9i9nIK+BNmHSjRs3OH/+fK7a1q1bVzdTm/Fn7dq1ueonY4KmjEfR7N69m4SEBExMTChSpEi2P9pspW/qLGrlypWBp8tIc3LkyBFGjx5NamoqI0eOZMCAAXkyBu0RQxqNJtuZXO2SXO14X5Q2Y/Dly5fzpD9DPO+XuK6urpiZmZGamsq1a9cMaqNddZBdBuwrVwxblZFb4eHh2Qb92iW6Gb+o0f759u3b2fZ569YtIPtjiETuSYAqhHjlzJwrUnLsHkp8sQ5je2dduTryHqELOhGysCvqyIDn6rtu8bLs7jSS8Z6tMc+wz+1g8E2abf6JX64eQa15s8/9EyI/Mbayx7xMDYOuNXepiXEBClDr1KlDvXr1AJg8efIzE+TcunWLgwcPGty/IQl3tLOwhQoV0lvGq13e27VrV06cOJHtz5gxY4D0bKlZnfX6ujk7O1OyZElSUlK4ceNGttedOnWKESNGoFar+eyzzxg2bFiejUF7TI+NjQ0ODpm/kImLi8Pf3x9jY2Nq1aqVJ4/ZtGlTzMzMuHv3bq7eMy9C+2VFUlLutsaYm5vrsuKuWLHCoDbaPbuRkZGZ6pKTk/nzzz9zNQZDqdVqNm7cmKk8Li5O9yVN48aNdeWNGjXCyMgIf39/jh8/nqnd48ePdYnIMrZ7WbTPW25fo/xGAlQhxGuhUqmwrduLsrOu49BmDGTIuht/aRsBk6vwaNtMNOrcJ5wwMzZhRPVm7O8yiibOT8+tS0pTM+P8LtptW8zFyLc3O54QeUllYo5Du7EGXevQbiwqE/NnX5iP/PjjjxQrVoyAgAB69OjBzp079WYyIX2/3Zw5c/jggw9ylZnz119/pXfv3mzZsiXTEteEhARWrVrF8uXLAejWrZtu71pQUJBuRvdZWUU7duyIiYkJYWFhnD592uCxvUra4EcbKP7XpUuXGDp0KMnJyfTr108XdL8ojUbDpk2bdEmiOnfunGUm4AsXLqDRaKhZs2aWe0b79OmDu7s7EyZMMPixixQpQv/+/QEYO3YsO3fuRFEUXX18fDx///23buY2L5Qpk55Y8OrVqyQmJuaq7YgRIzAzM2Pv3r1MmzYt0/v17NmzekfGaGdO161bh4+Pj6780aNHjBw5UpeoLK+ZmpqyePFivWAzOjqar7/+mri4OEqVKqWXbKx06dK0b98egKlTp+plFX748CGjRo0iMTERV1fXTEnKXgbta3Tu3LmX/livk+xBFUK8VkaWtjj1/hG7Rp8SsWY4ibfSU9UrKYk88ppKzMm1FP1kEdZV3s9132XtivBXqwFsuXuFb8968ygpPYGB35NwOm//hb4V6zG+VmvsMiRYEkLkjsrYBJuaHSnU7LMcj5op1PzzNz6D7/MoWrQoGzdu5Msvv+TSpUuMHj0aS0tLSpcujbm5OZGRkYSHhwPpCXRy2gv6XyqVikuXLnHp0iVUKhUlS5bE0dGRmJgYwsLCdBljGzduzJdffqlrt3nzZhRFoUyZMtSuXTvHxyhcuDCNGzfm0KFDeHl50aBBg+d4Fl6unj17sn79erZv306/fv0y1U+YMIGEhASMjY3x8fHJdt9p5cqVmTp1apZ1GY8XgvT9lMHBwcTGxgJQq1atbAPf7du368aZl0aOHEloaCje3t6MHj2a77//nlKlShEVFUVYWBipqamsWbMmy7NQn0fDhg2xt7cnODiY9957j7Jly2JqakrFihWZPHlyjm0rVqzIvHnzGDt2LBs2bGDTpk26Ja/BwcHEx8fTtWtXXcKq5s2bU7t2bc6fP0/Pnj1xcXHByspKt5T2m2++yfa1ehE1atTA1taWgQMHUrp0aezs7PD39ycpKQkrKyvmzZunm0nW+uabbwgMDMTHx4cuXbpQrlw5zM3NuX37Nmq1miJFirBo0aJcZ5p+Hu3bt+fQoUMsW7aMffv24eTkhEqlYvDgwXpnu+Z3BetfCSFEvmVeqgqlJh4i9uSfRP49jrSYCADU4bcI+V8bbOp8gNOH8zB1LJWrflUqFV3L1eC9Um7MPL+L9bfSv3VUUFh94xS7A6/xXb1OtHepIkmUhHhORubWOPX+EcuKTXmyYy7J9y/r6szL1MCh/ThsanTI9dnH+UWxYsXYsGEDhw8fZufOnVy6dIng4GDUajX29vY0adKEZs2a0alTp1xlZR0zZgyNGzfm+PHjXLhwgaCgIMLCwjA1NaVIkSJUqVKFjh078v77T7/AUxRFt1TR0Oy1Xbt25dChQ+zfv5+4uLjnyhz7MlWuXJlq1arh4+PD3bt3M+310+5NTUtLyzLxlFZOyXsyHi+kvdbOzo4GDRrQrl07unXrluXsaUJCAvv378fe3p42bdpk2bd2GWtu96eamJjwv//9jzZt2rBx40Z8fHy4ceMG9vb21KhRg5YtW+Lh4ZGrPnNiY2PDypUrWbx4MZcvX+bKlSu5WvbdqlUrKlWqxMqVKzlx4gQBAQGYmZnh7OxM3bp16dGjh+5aY2Njli1bxuLFi9m9ezchISEUKlSIZs2a8fnnn+vOlc1rKpWKxYsXs3LlSrZs2cKdO3ewtLSkefPmjBw5MstEYXZ2dvz111+sW7cOb29v7t69S2pqKiVLlqR58+YMGjQoz5JjPUvHjh2JiYnh33//5d69ewQEBACv9tzbV0GlZFwvUACcPn2aP/74gytXrpCQkICzszNt2rRhyJAhz512e8+ePfz555/cuHEDtVqNi4sLnTp1om/fvpiamubYNjQ0lFWrVnH06FHCw8MxNjamaNGieHp60qdPHypWrPhcY8pKt27d8PX1xcPDAy8vrzzrV4hXLS0+ikebpxF1YCkoT/9xVJlbU7jLNBzeH4nKJOe/e9k5E36PCSc3czs6Qq+8RamKTK/XidK2r+7sOCEKGiUtFSU1mbSEKDQJURhZ2WNsZY/KxLzAzZyKV+vIkSMMGTKEXr168f3337/u4eisWrWKWbNmMXbsWAYNGpSp/tGjRzRo0AAHBwcOHTqEpWXuMtWLvOHl5cXEiRN59913c52ITLx6BWoP6tq1a+nXrx+HDx/G3NyccuXKERISwi+//MIHH3zwXIf9zpkzh5EjR3L27Fns7e0pU6YMt2/fZu7cufTv3z/TPpOM9uzZQ/v27Vm9ejURERGULVsWZ2dnHj58yL///pvrjH9CvC2Mre0p+slCynx7Foty9XTlSnI8D/8eR+C0WiTcPPZcfdctXpY9nUcytub7ekmUDgTfoPmWn/j16lFSJYmSEM9FZWyCkbk1pg4lMS/pgalDSYzMrSU4FS+sadOmNGjQAC8vL0JCQl73cID0ZcDLli2jZMmS9O3bN8trtPtm+/btK8GpEAYqMAHqtWvXmDlzJgDff/89hw8fZvPmzezfvx8PDw/8/f1zvZZ93759rFy5EjMzM5YuXcq+ffvYtm0b3t7elCpVinPnzjF//vws2549e1a3V2HmzJmcOXOGzZs34+3tzblz59i8eTN169Z9sZsWooCzcKlJ6cnHKNb/d4xsni6fSQnxJXjWe4Qv609qTEQOPWTNzNiEL2u0YF/nUTQqUV5XnpiqZvr5nbTzXsKlyKA8uQchhBB5Y8qUKXz22WcvLYFOboWEhNC7d2/mzp2b7f7DCxcuYG1tzccff/yKRydE/lVglvgOHTqUAwcO0KVLF+bMmaNXFxAQQNu2bdFoNGzdutXgZbWdO3fmxo0bDBs2jJEjR+rVnTp1in79+mFmZsaRI0f0UrunpqbStm1b7t+/z6+//kqzZs1e/AYNIEt8RUGWFveIh/9OJvrwMr1yIyt7inwwg0LvDUZllHl/0LMoioLX3ct8d2Y7j5PjdeUqVHxaqR7jPVtjK0mUhBBCiHxLlvjmLwViBjU+Pp5jx9KX+2WVQc3V1VV3Ttnu3bsN6jMgIEB33lavXr0y1devXx8XFxdSUlI4cOCAXt3+/fu5f/8+Hh4eryw4FaKgM7YpTLF+v1J6ygm9Mxc1CVFErBlG0PRGJAVkfQRBTlQqFd3L1eRItzH0rvA026WCwiq/UzTf/BP7g/xy6EEIIYQQQuSVAhGg+vn5kZKSgpmZGdWqVcvyGu3ByVeuXDGoz8uXLwPp5x8VK1YsV31qA9YGDRrozikbOnQo/fv3Z+rUqbpgWgiRe5bl61Fm2hmcPl6IkaWdrjzp7lnuf1ePiLUjSYuPynW/DhbW/K/RB/zbdgjlCznpysMSoum3fzVDD68jMjE2L25BCCGEEK9Qt27duHnzpsye5hMFImvBvXv3AHB2ds42q672YFvttc+iTdusbZebPq9duwakp9Du2rWrri+tf/75hzZt2vDjjz++kjOThChoVMYmOLw/HNs63YncMJbY0+mHqKNoiDrwM7Hn/sWp94/Y1v8o10fH1Cv+Dns6f8nSq4dZdOUQ6v9PmLTtng9HQm4z7d329ChfS46kEUIIIYR4CQpEgBodHQ2Q45lJ2jrttXnZZ0xMjF659ryrFStWYGpqyqxZs2jVqhUajYadO3cyc+ZMdu/ejbOzM+PHj89xHBs2bOCff/4xaMz+/v4GXSdEQWFiX4ISn/9JoSYDeLBmOOrwmwCkxTwg/Pe+RB9dSdG+SzB3rpSrfs2NTRhdoyXtXasy7oQX5yMCAYhOSWTM8X/ZfPcysxt0xcX21Zx7JoQQQgjxtigQAWpycjJAjmeSamcqtdfmZZ9JSUl65QkJCUD6wdHfffcd3bp109X17t2bpKQkZs2axZ9//sngwYP1Eiz9V2RkJL6+vgaNWYi3lVXl5rhOv8yT3fN5tG06SkoiAIk3DhM4tQYOrcdQuPMUjMytc9Wvm30xvNp9xtobZ5h5fhfxqenHSh0LvUOLzQsY6/k+Ays3xOQ5kjMJIYQQQojMCsQeVHNzcyA9IMyO9rxS7bV52aeFhX6GT21be3t7OnfunKndhx9+iIWFBSkpKZw9ezbHcTg5OeHh4WHQz3/HIcTbRGVihmOHCbjOuIZ1zY5PK9JSebJzLgGTqhB3aVuu+zVSGfFppfoc6jqGlqWfZgBPSlPzw7mddNq+FN9HoXlxC0IIIYQQb70CMYNqyPJdQ5bsZmRnZ2dwn9prM7ZNSEjA1dUVE5PMT7G5uTmlSpXizp07BAcH5ziO3r1707t3b4PGrD1mRoi3mamTKyW/3ELcpW1E/DmK1Efpy3NTH90ndGFXrGt2pOjHCzEt4pKrfp1t7Pmjxad43/Nh6pltPEpKP5LG51EI7byX8HmVJoyq0QJLk+xXXQghhBBCiJwViBlUV1dXAEJDQ7Od8bx//77etc9StmxZAAIDA7O9Jrs+33nnHSDn5cHaWVaNRmPQeIQQuWNTsxOuM6/h2GECGD/9uxh/yZuASVV4vGMuSmr2KySyolKp6PROdQ53HUPP8rV05WmKhp+vHqbV1oWcCr+bV7cghBBCCPHWKRABaqVKlTA1NSUlJQUfH58sr7lwIf18xBo1ahjUZ/Xq1QEIDg7mwYMHuerT09MTgKCgoCzbKYqiqytevLhB4xFC5J6RuRVFPpiByw+XsKz4nq5cSUng4caJBH7jScLNo7nu18HCmvmNe7Cu1UDK2DzdQ34v5iE9dv3OuBNeRCcn5sUtCCGEEEK8VQpEgGpjY0OjRo0Assx4GxAQwOnTpwFo06aNQX2WLVsWNzc3AP7+++9M9adOnSIwMBBTU1NatGihV9e2bVtUKhXh4eGcOnUqU9t9+/YRExODsbEx7777rkHjEUI8P3PnSpQav5/ig1dhbPv0jNOU0OsEz2pG+PIBpMZE5rrfJiUrsL/LKD7zaIxRhmNn1t06S/PN89kVeC1Pxi+EEEII8bYoEAEqwNChQ1GpVGzdupW///4bRVEAiIiIYMyYMWg0Glq2bEnFihX12jVv3pzmzZuze/fuTH0OHz4cgGXLlnHw4EFd+d27d5kyZQoAH330UaYsvOXLl6d9+/YAfPvtt3rnpN66dYuZM2cC0LlzZ5lBFeIVUalU2DXsg+tsPwo1+wwyBJQxx1cTMLESUYeXoeRy2b2VqRlT322Pd4dhVHYsoSt/kBjL4IN/MvjgWh4kxOTQgxBCCCGE0FIp2kiuAFi1ahWzZ89GURRKlCiBg4MDd+7cISUlhbJly7Ju3bpMwaS7uzsAs2bN0jsORmvmzJmsXr0agDJlymBlZcXt27dJS0ujVq1a/PHHH1lmBo6Li6Nv3774+vpiZGREhQoVUBSF27dvoygKNWvWZPny5djY2OTZ/WuTJHl4eODl5ZVn/QpRECX6nyFi9VCS71/WK7coX59iny7FvHS1XPep1qTx27Vj/HR5P8lpqbryQmYWTHu3Az3K10KVITAWQgghhBD6ClSACulLb1euXImPjw8JCQk4OzvTpk0bhgwZgrV15jMQnxWgAuzatYt169bh5+eHWq2mTJkydOrUiX79+uWYCCklJYVVq1axY8cOXbKld955h06dOvHRRx/pzlHNKxKgCpE7SloqUQeW8sjrGzRJsU8rjIxxeH8khbtMw8jSNtf93o2OZNxJL06H39Mrf6+kG3MadKOkjf0LjlwIIYQQomAqcAHq20wCVCGej/pJCJHrvyLu7Ea9chOHkjh99BM2tbvleuZTo2hYd+sc08/tJE6drCu3MTVnSu12fOReByNVgdllIYQQQgiRJ+TTkRDirWfqUBLnoRso+dVOTIuW05WnPgkh7OeehC7ohDoyIFd9GqmM+MS9Lge7jKZZSXddeZw6mQmnNtN793ICYx/l1S0IIYQQQhQIEqAKIcT/s67aGpfpV3DsPBWVydMl+PFXdhIw+fnOTnW2sWfN+/1Y0LgnhcwsdeUnw+/ScssClvseJ03OQxZCCCGEACRAFUIIPUZmlhTp+i0u069gWam5rlxJSUw/O/Xb2iTePpGrPlUqFR+U9+RQ1zG0KeOhK09MVfPt2e103/Ubd6Ii8uwehBBCCCHyKwlQhRAiC2bF3Sg1bi/Fh6zWPzs1+BpBM5oQvnIIaXGPc9VnUStbljX/hF/e+whH86dJ285HBNJ62yJ+9jlMqiYtz+5BCCGEECK/kQBVCCGyoVKpsGvwSfrZqe8N0auLObqCgImViTmxltzkmlOpVHQsW41D3UbT+Z3quvLktFRmXdhN5x2/4Pc4PM/uQQghhBAiP5EAVQghnsHY2oFi/X6h9JTjmJWqqitPi40kfFk/gue+T0rYzVz1WdjChp+bfsiK5n0oluEomysPg2nnvZifLu8nJcNZqkIIIYQQbwMJUIUQwkCW5evj8u05ivSai8rMSlee6HeIwKk1eOg1DU1KUq76bO3iwYGuo+lVoZauTK1JY96l/bT3XoLPw+A8G78QQgghxJtOAlQhhMgFlYkpjm2/wnXmNaxrdNCVK6kpPN42ncCp1Ym/ti9XfdqbWzGvUQ/+bDUAZ+tCunK/J+F03L6U2Rd2k5TL7MFCCCGEEPmRBKhCCPEcTIu44PzlFpxHbMLEsZSuXP3gDiH/a0PYrx+TGv0gV32+V9KNA11G08e9rq4sTdGwxOcwbbct5nJkUJ6NXwghhBDiTSQBqhBCPCeVSoVNrS64zriGfetRoHr6KzX29AYCJlYm6vAylFycc2prZsGsBl35u81gXGwddeW3oyPotCN9NjVZ9qYKIYQQooCSAFUIIV6QkaUtRT+cR5lvz2Lxzru6ck1CFBGrPido1nskh/jmqs+GJcqxr/MoBlZuiApVen+KwhKfw7Tbtlj2pgohhBCiQJIAVQgh8oiFS01KTzlO0T5LMLK005Un3T5B4DeePPx3CpqURIP7szI147u6Hfm37RBcbAvrym9GPaDj9qX8eHGvZPoVQgghRIEiAaoQQuQhlZEx9i2+wHWmLzZ1PnhakZbK4+2zCJxcjfhre3PVZ93iZdnX+Uv6V2rwtDtFw8IrB2nvvQTfR6F5NXwhhBBCiNdKAlQhhHgJTByccR72N86jtmFS2EVXro68S8j/2hL26ye5SqJkZWrGD/U68U+bwZS2cdCV+z0Jp733EuZf2o9ak5an9yCEEEII8apJgCqEEC+RTY32uM68ikPbr8HIWFcee3r9cyVRalCiHPu7jKJvxXq6slRFw/zL++ngvYTrj8PydPxCCCGEEK+SBKhCCPGSGZlb49RrDi7fnsuTJErWpubMrN+FDa0HUdLaXlfu+ziM9t5LWHj5gMymCiGEECJfkgBVCCFeEfMy1fM0iVIj5/Ls7zKKj92eBr1qTRo/XtpH5+1LufEkPE/HL4QQQgjxskmAKoQQr5BhSZT2GdyfrZkFcxp2469WAyhhVUhX7vMohHbbFrPE5xCpMpsqhBBCiHxCAlQhhHgNck6i1Iaw3z8lNSbS4P6alnTjQNfR9KpQW1eWoklj9oU9dN7xC7ejIvJ0/EIIIYQQL4MEqEII8Rplm0Tp5J8ETPIg+vhqFEUxqC87MwvmNfqANe/3p5jV0yXEVx4G02bbIn65eoS0XCRkEkIIIYR41SRAFUKI10ybRKnMtLOYl306A6qJe8SD5QMIntuKlPDbBvfXvJQ7B7qMokd5T11ZcloqM87v4oNdvxEQ8yhPxy+EEEIIkVckQBVCiDeEhUsNykw9idPHC1BZ2OjKE/0OEjilOo+8Z6GkphjUl725FT817smqlp9S1NJWV34uIpBWWxey9sZpg2dmhRBCCCFeFQlQhRDiDaIyMsbh/RG4zriGdY0OunIlNZlHm6YQOK02iXdOGdxfy9KVONB1NJ3fqa4rS0hNYeKpLfTZ9wdh8dF5On4hhBBCiBchAaoQQryBTAuXxvnLLZQY9g/G9iV05SkhvgTNaMyDNcNISzAsuHQwt+Lnph/yy3sfYW9upSs/HHKLllsWsOXuZZlNFUIIIcQbQQJUIYR4Q6lUKmzrdMd1pi+Fmn/+tEJRiD74KwGTPIg972VwcNmxbDUOdBlFi1IVdWXRKYkMP7KBoYfX8yQpPq9vQQghhBAiVyRAFUKIN5yxVSGK9f2Z0pOPYVbSQ1eeFhVG2JIehC7qivpRkEF9FbOyY1XLT5nbsBvWJma6cu8AH1psWcCBoBt5Pn4hhBBCCENJgCqEEPmEZYUGuHx3nsLdfkBlYq4rj7/kTcDkKjzZtwRFk/bMflQqFR+5vcu+LqOoW6ysrjwiMZZP969i7IlNxKmTX8o9CCGEEELkRAJUIYTIR1QmZhTuNAmX6VewrNRMV64kxRH515cEzWhCcvA1g/oqY+vIxraD+aZOe8yNTXTl62+d4/0tCzgVfjfPxy+EEEIIkRMJUIUQIh8yK16BUuP2UWzgCoysHXXlSf6nCZxWm4ebvkGTkvTMfoxURgyp0phdnUZQtXBJXXlQ3BN67lrG92e3k5Sqfin3IIQQQgjxXxKgCiFEPqVSqSjUuB+us3yxrffh04o0NY+9ZxD4jScJN48a1JebfTG2dRjK6BotMFal/9OgoPC773HaeS/G52Hwy7gFIYQQQgg9EqAKIUQ+Z2JXlBKf/0nJMdsxKeyiK1eH3yR4VjMerPqctPioZ/ZjamTMVzXfZ1uHoZQv5KQrvxUVQaftS/np8n7UBuxxFUIIIYR4XhKgCiFEAWFdrS2uM3ywb/UlqJ7+eo8+vIyAyVWIPbfJoCNpqhcpxa5OIxns0QgVKgBSFQ3zLu2ny45fuBMV8dLuQQghhBBvNwlQhRCiADGysKHoR/MpM/UkZqWr6crTosII+7knoYu6oX4S8sx+LE1MmfZuB/5uM4hSNva68isPg2mzbTGr/E4ZfP6qEEIIIYShJEAVQogCyOKdOrhMO0uRD2aiMrXQlcdf2kbgpCpEHfwFRaN5Zj8NSpRjX+dR9KpQW1eWlKZmyumt9Nn3Bw8SYl7K+IUQQgjxdpIAVQghCiiViSmOHcbj8sNlvSNpNIkxRKwZTtCs90gOuf7MfmzNLJjX6ANWtuhLYQtrXfnhkFu03LKAnQGGHWsjhBBCCPEsEqAKIUQB9/RImuUYWTvoypNunyDwG08ebfkeJTXlmf20KlOZ/V1G0bJ0RV3Zk+QEhhz6kzHHNhJrwLE2QgghhBA5kQBVCCHeAulH0vTHdaYvtu/2fFqRpubRlu8InFabxDunn9mPk6Utf7T4lNkNumJpYqor/+fOBVptXciZ8HsvY/hCCCGEeEtIgCqEEG8Rk0LFKDF0Pc6jtmHiWFpXnhLiS9CMRkT8NQpNUlyOfahUKj5xr8ueTl9S0+lpH0FxT/hg1+/MOr+blLTUl3YPQgghhCi4JEAVQoi3kE2N9rjOuEqhFkNBlX6UDIpC1L7FBEyuRvzVPc/s451CRdjc7nPG1GiJ8f8fa6Og8PPVw3TavpRbUQ9e4h0IIYQQoiCSAFUIId5SRpa2FOuzmNKTjmBW4um+0tRHgYTMa0fY75+SFvcoxz5MjIwZU7MlW9p/QVm7Irrya49DabttMSuun0CjPDtbsBBCCCEEgEopYAfZnT59mj/++IMrV66QkJCAs7Mzbdq0YciQIVhZWT1Xn3v27OHPP//kxo0bqNVqXFxc6NSpE3379sXU1DTT9cHBwbRo0SLHPqtXr84///zzXOPJTrdu3fD19cXDwwMvL6887VsIUbBpUpJ4vH0Wj3fMhgzLc41tnXD6eAG2dXuh0s60ZiNBncIP53aw9uYZvfImzhWY1+gDSlgXeiljF0IIIUTBUaAC1LVr1zJjxgwURaF48eI4Ojpy584dUlJSKFeuHOvWrcPe3j5Xfc6ZM4eVK1cCUKZMGSwtLblz5w5paWnUqVOHlStXYmZmptcmY4Dq6emZZb8VKlTg+++/z/1N5kACVCHEi0oOukr4ysEk3zunV25dvT1F+/6MaeHS2bR86kDQDb4+8S+RiU/3shYys2R2g650LFstz8cshBBCiIKjwASo165do0ePHiiKwnfffUfPnj1RqVQ8ePCAL774Al9fX1q1asXixYsN7nPfvn0MHz4cMzMzFixYoAs6/f39GTJkCMHBwfTv358JEybotcsYoN68eTPvbvIZJEAVQuQFRZNG1L7FPNw0FSUlQVduZGFLkR6zKNTsM1RGOe8QeZQUx7gTXuy5r3/OardyNZlerzN2ZhYvZexCCCGEyN8KzB7UpUuXotFo6Ny5M716PV2KVqxYMebPn4+RkRF79+7lxo0bBve5ZMkSAAYPHqy3ZLdcuXJMnz4dgL/++ovHjx/n4Z0IIcTrpTIyxqH1KFxn+GDl8fR3nyYploi1wwme3YyU0Jx/lxa2sGF58z782LA7ViZPV5l4+V/i/S0LOBV+96WNXwghhBD5V4EIUOPj4zl27BgAPXv2zFTv6upKvXr1ANi9e7dBfQYEBOiC2V69emWqr1+/Pi4uLqSkpHDgwIHnHboQQryxTJ3KUvLrPRQbuAIjawddeeKt4wR+U5NH22aipKqzba9SqfjQrQ57O39J7aIuuvKQ+Ch67lrGnAt7UGvSXuo9CCGEECJ/KRABqp+fHykpKZiZmVGtWtb7m2rVqgXAlStXDOrz8uXLAJQuXZpixYo9d5/Tp09nwIABDBw4kG+++Ya9e/ei0UhGSyFE/qBSqSjUuB+uM65hU+cDXbmSmsIjr6nc/74eSQEXc+zD1a4w/7YdwjjPVphkOI5msc8huuz4hbvRD1/qPQghhBAi/zB53QPIC/fu3QPA2dk5y6y6kJ7gKOO1zxIQEKDX7nn7XLt2rd7///3331SqVInFixdTuvSzk41s2LDB4Gy//v7+Bl0nhBC5ZWJfHOdhfxN3cSsP1gwnLSoUgOT7l7n/fT0c2n5N4c7fYJTN3lITI2NGVm9O05JuDD+ygXsx6UHplYfBtNm2iO/qdqR3hdrPzBQshBBCiIKtQASo0dHRABQqlP0RBto67bV52WdMTIxeuYmJCZ06daJ9+/aUL1+eokWL8uTJE44cOcKCBQvw8/Nj4MCBeHl5YWNjk+M4IiMj8fX1NWjMQgjxstl4dsbSvSkP/xlP9JHl6YWaNJ7smEPchc0UH7AMS7dG2bavXqQUuzuN4Nuz21l/Kz1TcEJqCmNPbOJg8A3mNuiGg4X1q7gVIYQQQryBCkSAmpycDJDt7CmgOwpGe21e9pmUlKRXXrx4cX788Ue9smLFitGzZ0/q1q1Lt27dCAwMZM2aNQwdOjTHcTg5OeHh4WHQmP39/TONRQgh8pqxtT3F+v+Gbd1ePPhjCOrI9FUk6vBbBM16D/vmQynywQyMLG2zbG9tas6PDbvTrKQ74056EZWcnil4V6AvFyODWNi4J42cy7+y+xFCCCHEm6NABKjm5uYAqNXZJ+tISUnRuzYv+7SwMPy4BBcXFz788EOWLVvGvn37nhmg9u7dm969exvUt/aYGSGEeBWsKjfHZfoVHnp9Q9TehaAooChEHfiZuMveFOv/G9ZVWmXbvp1rFWo6lWb0sY0cD7sDwIOEGD7cs4LPqjRmnGcrzIwLxD9TQgghhDBQgUiSZMjyXUOW7GZkZ2dncJ/aaw1Vs2ZN4Ok+VyGEyK+MzK0p+uE8Sk8+jplzZV156qP7hPyvLeHLB5AWl/1RXCWsC7Gu9QCm1mmHqZExkJ5A6ddrR+m0fSl3oiJe+j0IIYQQ4s1RIAJUV1dXAEJDQ7Od8bx//77etc9StmxZAAIDA7O9Jrd9ammXDaelyfEKQoiCwbJ8Pcp8dx7HTlMgw6xnzPHVBEyqQux5r2zbGqmM+KxKE7w7DKV8ISdd+bXHobTZtpi1N06jKMpLHb8QQggh3gwFIkCtVKkSpqampKSk4OPjk+U1Fy5cAKBGjRoG9Vm9enUAgoODefDgQZ70qXX79m0gfa+qEEIUFEam5hTp9h0u357D3LWWrjwt5gFhS3oQuqQHqVHh2bavUrgkuzqNoG/FerqypDQ1E09tYcCBNTxKinup4xdCCCHE65fnAer58+dZsmRJXnebIxsbGxo1Ss8amdWRLAEBAZw+fRqANm3aGNRn2bJlcXNzA9KPhvmvU6dOERgYiKmpKS1atDB4rPHx8axbtw6Ahg0bGtxOCCHyC/PS1Sgz9SRFes5GZfp0j37ceS8CJlch5sSabGdELU3MmFm/C3+06Iuj+dNsvvuC/Hh/y0KOhNx66eMXQgghxOuT5wHquXPn+Pnnn/O622caOnQoKpWKrVu38vfff+s+/ERERDBmzBg0Gg0tW7akYsWKeu2aN29O8+bN2b17d6Y+hw8fDsCyZcs4ePCgrvzu3btMmTIFgI8++ghHR0e9dlOnTmXv3r26JEpa/v7+DBo0iODgYKysrBg4cOCL37gQQryBVMYmOLYbi8sPl7B0a6wr18Q/IXxZf0J/6oj6cXC27d8vU5n9XUbRtKSbriwiMZaP967k2zPeJKVmn8BOCCGEEPmXSsnjjT2//PILixYtws/PLy+7NciqVauYPXs2iqJQokQJHBwcuHPnDikpKZQtW5Z169ZlCibd3d0BmDVrFt26dcvU58yZM1m9ejUAZcqUwcrKitu3b5OWlkatWrX4448/MmUG7ty5Mzdu3MDU1JQyZcpgY2PDkydPdHtWCxUqxIIFC2jQoEGe3r82i6+HhwdeXtnv9xJCiFdJ0WiIPvwbkf9MQMmwTNfI0o4iveZSqOkgVCpVlm01ioY//E4x8/wuktNSdeUVHYrzc9MPcXco9tLHL4QQQohXx6AAdeLEiQZ3ePPmTfz8/F5LgArpS29XrlyJj48PCQkJODs706ZNG4YMGYK1debD358VoALs2rWLdevW4efnh1qtpkyZMnTq1Il+/fpleU7qzp07OXbsGNeuXePhw4fExMRgYWGBi4sLTZo04eOPP8bJySmLR3oxEqAKId5k6kf3efDHZyRc26tXblW5BcX6/46pk2u2bf0ehzP8yHpuRj3NCWBubMK0dzvQx71utgGuEEIIIfIXgwLUihUrolKpDM6iqFKpXluA+jaTAFUI8aZTFIWY46uJXDcGTeLTY7xU5tYU6TEL++ZfoDLKevdJYqqaWed3sdLvpF556zKV+V/D7jhYZP4SUgghhBD5i0EBaqNGjahSpQqLFi16Zoe//fYbS5culQD1NZAAVQiRX6Q+CeXB6i+Iv7xdr9zSrTHFBizDrHiFbNseDL7JmGMbeZhhuXBxKzsWNelFgxLlXtqYhRBCCPHyGZQkqUqVKly/fh0zM7Nn/piYmDy7QyGEEG81EwdnnL/cQvHP/8TIprCuPPHWMQKn1uDxrvkomqzPim5eyp29nb+kqfPTIDY8IYZeu5cz58Ie1Nm0E0IIIcSbz6AA1cPDg4iICCIiIp55ra2tLSVKlHjhgQkhhCjYVCoVdvU+xHXGVWzqfKArV9RJPPx7LEHTG5Mccj3LtkWtbFnbqj9T67TD1Mg4vR0Ki30O0X3nb9yPffxK7kEIIYQQecugJb4JCQk8efKEokWLZpkUSLwZZImvECI/iz23iYi1w0mLefplqMrEjMJdpuHQ9mtUxlmv0PF5GMywIxu4F/NQV2Zras6sBl3p8k6Nlz1sIYQQQuQhg2ZQraysKFmypASnQgghXhrbOt1xnXkN2/of68qU1BQe/juZ+9/XJznIJ8t21YqUYnenEfSqUEtXFqtOZviRDYw5tpF4dfJLH7sQQggh8oZBAaoQQgjxKhjbFKbEZ2twHrUVY3tnXXly4EUCv63Do60/oKSqM7WzNjVnXqMe/Nz0Q2xNn55N/c+dC7TZthifh8GvZPxCCCGEeDESoAohhHjj2NTogOuMq9g1GfC0MC2VR5u/5f739UgKvJxlu87vVGdP5y+p5VRGV3Yv5iGdd/zCr1ePolE0L3nkQgghhHgRLxSgqtVqOnbsyMGDB/NqPEIIIQQAxtb2FB+wjJJf78ak8NOAM/n+Ze5/X5eHm79DSU3J1K6MrSOb2n3Gl9Wbo0IFgFqTxvTzO+mz9w8iEmJf2T0IIYQQIndeKEBVFIXbt28T83/t3XdcleX/x/HXYQsIggNFBVw4cOYus1yFlbNSW6ZZlqO9UytXat+Gpdmw3JlaaY5Sc2S5NVNRHCkKiIjiYMg6wDm/P/xxhAAFPOz38/HwkX7u67ru6766lPM5931fV1yctfojIiKShUvTHvhOOoj73cOvB9PTuLxyAmHj25Mctj9bHTsbW16/7R6W9XyGGs7ulvifkSfosXI6m84cK4qui4iISD7pEV8RESnxbCu44TXkS2q+vh67yr6WuPFMEOHj23Nx+Xs53k3tWL0uv/d9kUCfAEvsUnICT26cx/u7V5OSnlYk/RcREZG8UYIqIiKlhktAd/wmHcS963PXg6Z0Lq+aRNj77UgO3ZetjoejM7O7Ps7Ujv1wzLRVzbdHttN7zRecio0uiq6LiIhIHihBFRGRUsWmQkW8Bn9BrTc2YFfFzxI3RhwifEJHLv40FtN/tpYxGAw83qg9v/V6nkYe1S3x4MvnCFw1g59OZk9sRUREpOgpQRURkVLJuUnXa3dTu428HjSlc3nNFMLfb0vy6b+z1Wno4cWaB0YxpHFHSywxzchLW3/kxb+WclV7poqIiBQrJagiIlJq2Ti54vXEDGq9uQn7qnUscePZYMIn3k70j+9gMiZnqeNkZ8+kDn34rusTuDtUsMR/DtlPz1UzOHTxbJH1X0RERLJSgioiIqWec+O78Z14gErdRl0PmtK58us0wt9vQ/Kpvdnq3OsbwIY+L9LOy88Su7Zn6iy+O7Ids9lcBD0XERGRzJSgiohImWDj5Eq1Jz6n1lubsa9a1xI3Rh4lfNIdOb6b6u1aiWWBz2TZM9VoSue93at5atMCriQnFOk1iIiIlHdKUEVEpExxbnQXvpMOUKnH82C4lnRa3k0dn32l34w9U5cEPo1XhYqW+IYzR+mx8jN2RZ0qyu6LiIiUa0pQRUSkzLFxdKHaY9Oz302NOHxtpd8c9k29o0Y9fu/7Il1qNrTEohLjGLBuNp8e2Ei6yVRk/RcRESmvbilBdXBwYNOmTdxzzz3W6o+IiIjVODfsfO1u6n/eTb28ahJh49uTHHYgS/nKTq7M7/Ek77a9H3sb22vFzWY+3r+Rgetncy4htgh7LyIiUv7c8h3UmjVr4uzsbI2+iIiIWJ2No8u1d1Pf3Jh139QzQYRPaM+lXyZgTku9Xt5gw/Cmd7Livufwrehpie+KOs09Kz9j45mjRdl9ERGRckWP+IqISLng3LgLfhMP4N7l2evB9DQu/TKe8IkdSTkTlKV8y6q1Wdf7BfrUaWGJXUlJZMjG+by/ezUp6WlF1XUREZFyQwmqiIiUGzYVKuL15Cxqvr4eu8o+lnhK2H7C3m/HpVUfYM6UeFZ0cGLmXYP46I4HcbK1t8S/PbKdvr9+yanYi0XafxERkbLOYC6Ejd7S09MJDQ0lLi6OtLQbf8Pctm1ba5++3Orfvz/BwcEEBASwfPny4u6OiEiJlp4Ux8UlrxP757dZ4o5+ran+9BwcazXNEj8Rc4ERWxZz7EqUJeZi58CU2/vRv16rIumziIhIWWfVBDUqKopPPvmEDRs2kJycfPOTGwwcOXLEWqcv95SgiojkX8Kh9ZyfO5y0yxGWmMHOgcp938Oj52sYbO0s8aS0VCbu/ZUFx3ZlaWNggzZM6tCbCnYORdZvERGRsshqj/ieOXOGhx56iNWrV5OUlITZbL7pL5OW7BcRkWLm0uxefCcF4XbnUEvMnGbk4k9jODO5M8Zzxy3xCnb2fNCxL193eQx3BydLfOmJv7l/9Uz+jTlfpH0XEREpa6x2B/Xll19m7dq1eHp68uqrr9KpUyeqVKmCra2tNZqXPNAdVBGRW3P14G+cn/ss6TGRlpjB3okqD02mUo8XMNhc/1434uoVRm75gX+iwy0xJ1t7Jnfsw4D6rTEYDEXadxERkbLAandQd+zYgcFg4JNPPuHBBx/Ey8tLyamIiJQqri3uw29yEG53PGGJmVOTif7hVSKmdcN44ZQlXsvVg5/ve5Znm3a2xJLTU3l120+8tHUZCakpRdp3ERGRssBqCarRaMTJyYkOHTpYq0kREZEiZ+viQfVn5uH9wnJs3apZ4knH/yJsXEtiNn9FxsNH9ja2jGt7H/O7D8HD8fqe4D+H7Of+1TM5cvlckfdfRESkNLNaglqrVi0KYUFgERGRYuF6Wx/8Jh/Ctd3Dlpg5JYELC0Zx9uOepF46Y4l3q92I9X1epJ2XnyV2MjaaXmu+YNHx3fr5KCIikkdWS1B79uxJSkoKO3futFaTIiIixcq2YhW8Ry6hxojF2Lh4WuKJhzcQNrY5sVvnWZJPbxd3lgU+w+jmd1vKpaSn8daOFYz+cwnxxpuvbi8iIlLeWS1Bfeqpp2jUqBHjxo3jzJkzN68gIiJSSlRsPxC/yYdwafmAJWZKiuP8d8OI/KwvaTHX9ka1s7HlrdaBLLrnKSo7uVjKrjx9kJ6rZnD40tki77uIiEhpYtV9UGNiYhg3bhzbtm3j3nvvpVmzZri4uNywTt++fa11+nJPq/iKiBQus9lM3PYFRH//EqakOEvcxsUTr8Ezqdh+oCUWlRjH838uYWfU9YWVHGxsea/dAwxu1EGr/IqIiOTAqglqcHAwkyZNYv/+/Xn6wWswGDhy5Ii1Tl/uKUEVESkaqZfOcH7O0yQGb8wSd233MF5PzMS2YhUA0k0mPj24ic8ObMbM9R+39/s148Pb++PuWKFI+y0iIlLS2VmroWPHjvHEE0+QlJQEgL29PR4eHtpqRkREyhz7yrWp+do6Yrd8Q/SS1zGnJABwdc+PJB37C6+hX+Haqje2Nja81qoHHb3qMPqvJUQnXQXg19BDHLp4lll3P0LLqrWL81JERERKFKvdQR01ahSbNm2idu3aTJw4kXbt2mFjY7VXXCUPdAdVRKToGS+c4vx3w0g6/leWuFunJ6n66KfYOrsDEJ0Uzwt/LWVr5ElLGXsbW8a06cmwJnfokV8RERGsuEhSxmO9n376KR06dFByKiIi5YJDtbrUenMTVR/5BIO9kyUet20+YeNaknhkMwBVK1RkUY+neL1VD2z+PxlNNaXz/p41PL15ITEpicXSfxERkZLEallkUlISFSpUoGnTptZqUkREpFQw2Njgce+L+I7fh1PddpZ42qVwIj7swYVFL2JKScTWxoYXW3ZjaeAzeDm7WcqtDz9C4KrP2R+tVfBFRKR8s1qC6uvrS1paGunp6dZqUkREpFRx8G5E7TFbqdx/AtheX+YhZuNMwt5rTdLJXQB0rF6X3/u8wN01/S1lIq7G0P+3r/g2eBtWXL9QRESkVLFagtq3b1+MRiObN2+2VpMiIiKljsHWjsq9x+Dz7i4cal1/qig16l/OTL6Tiz+NxZxmpLKTKwt6DOGt1oHYGq79OM545Hf4H4uITUkqrksQEREpNlZLUJ944gk6dOjAu+++y/79+63VbL7t2rWLZ599lg4dOtC8eXMCAwOZPn06iYkFf7dn/fr1PPHEE7Rt25aWLVvSp08fvvvuO1JTU/PcRlJSEt26daNhw4Y0bNiQ3bt3F7g/IiJS8jn5tsLnvT143Pc6ZCyAZDZxec0Uwsd3IOVMEDYGG0Y3v5tl/3nkd21YMPetnsGhi2eLqfciIiLFw2qr+M6cOZO0tDQWL15MfHw8rVu3plmzZri4uNyw3ujRo61xegAWLlzI5MmTMZvNVK9eHU9PT06ePInRaKRevXosXryYSpUq5avNadOmMWfOHAB8fHyoUKECJ0+eJD09nbZt2zJnzhwcHBxu2s6UKVOYN2+e5c8LFiygffv2+erLzWgVXxGRkinpxHaiZg8l9ULI9aCtPVX6jcej56sYbO24mHSVF/9ayp+RJyxFHGxsea/dAwxu1EGr/IqISLlgtQS1UaNGlh+eGU3m5Yfp0aNHrXF6Dh8+zMMPP4zZbGb8+PEMGDAAg8HA+fPnGTFiBMHBwdxzzz3MmDEjz21u2LCB0aNH4+DgwPTp0+nWrRsAISEhDB8+nIiICIYOHcpbb711w3aCgoIYNGgQd999N5s2bQKUoIqIlDem5KtEL3uT2M1fZYk71e9I9afn4lC9ASaziRkH/+DjAxsxZfrx3MuvOR/e0Z+KDk7/bVZERKRMsVqC+sQTTxSo3sKFC61xekaOHMmmTZvo27cv06ZNy3IsNDSUnj17YjKZWLlyJY0aNcpTm3369OHYsWOMGjWKF154IcuxnTt3MmTIEBwcHPjzzz/x9PTMsY20tDT69+/PmTNnWLt2LXfddRegBFVEpLxKOPw75797mrQr1x/fNTg4U3XANNy7PofBxobt50IY/ecPRCddtZSp41aFr7s8ShNP7+LotoiISJGwu3mRvLFWolkQCQkJbN26FYABAwZkO+7n50eHDh3YsWMH69aty1OCGhoayrFjxwAYOHBgtuMdO3bE19eXsLAwNm3axMMPP5xjO99++y3Hjx/n7bffpnr16vm5LBERKYNcmt6D76SDXFj0IvE7vwfAbEzkwqLnubr/F7yGzeGOGvVY3/tFRv/5AzuiTgFwOu4ivdbMYnz7Xjzm306P/IqISJlktUWSitPRo0cxGo04ODjQvHnzHMu0bt0agIMHD+apzQMHDgBQu3ZtvLy8CtTm6dOnmTVrFgEBAQW+wywiImWPrYsHNZ5dQI3RP2JbsYolnhi8ibAxzYnb8T1VK7jyw71P81LLbhi4loympKfx1o4VPP/XUhJSU4qr+yIiIoWmTCSop0+fBsDb2xt7e/scy/j4+GQpezOhoaFZ6uW3TbPZzLvvvktqairjx4/H1tY2T+cVEZHyo2Kb/vhOCsKlVW9LzJQUS9Q3gzk3axAkXuG1Vj34/p6nqOx0fdHBX04d4P7VMzl2Jao4ui0iIlJoCvyI7969e63SgbZt295yG7GxsQC4u7vnWibjWEZZa7YZFxeX7diyZcvYs2cPTzzxBM2aNcvTOXOyZMkSli1blqeyISEhNy8kIiIlip27F94vLCdu23yiv38JU3I8AFf3/kTSv9uoPuxbOjfvyfo+LzJqyw/sPn/tS9GTsdE8sPoLJnfsw8AGbYrzEkRERKymwAnqE088ccvvvxgMBo4cOXJLbQCkpFx7zCm3u6eAZSuYjLLWbDM5OTlL/MKFC/zvf//Dy8uLl156KU/ny010dDTBwcG31IaIiJRsBoMB9zuH4NzobqK+fYqk438CkB4bxdlPHsD97uFUG/Q/lgY+zUf7NzAzaAsAyempvLrtJ3ZFnWJyh74429982zMREZGS7JYWSbLSAsC3zNHREYDU1NRcyxiNxixlrdmmk1PWZf8nTJhAfHw8H3zwAa6urnk6X26qVq1KQEBAnsqGhIRkS5ZFRKT0sK/qR603NxLz+2dc/GkM5rRrX5bGbvmGxCObqP7MPN5qHUg7rzq8+NdSrqQkAvDjyX84eDGCr7s8ToNK1YrzEkRERG5JgRPUjP088+Py5cvMmjWLLVu2WDW5zcvju3l5ZDczNze3PLeZURaujcuGDRvo0qUL99xzT57OdSODBg1i0KBBeSqbsc2MiIiUXgYbGzwCX8a52T1EffMkKWH7AUi9EMKZD+7C477X6dLvfdb3foGRf/7A3xfCAPg35gL3r57JtNv7069ey2K8AhERkYIrcIJas2bNPJdNSkpizpw5zJ07l4SEBMxmM3Xr1uWVV14p6Omz8PPzAyAyMpLU1NQcH8sNDw/PUvZm6tSpA0BYWFiuZXJqM+OR5b///ps77rgj17rPP/889vb29OzZk7Fjx+apTyIiUn441gzAZ9wOLq2cyOU1U8FsArOJK79OIzFoHdWHz+fHnsOZtm89Xx3+C4DENCPP/7WEvRdCea/dAzjaWm03ORERkSJRqD+50tPTWbJkCV9++SWXLl3CbDZTvXp1Ro8eTf/+/bGxsc4iwo0bN8be3h6j0UhQUJBl+5fM9u3bB0DLli3z1GaLFi0AiIiI4Pz58zluNXOjNuPj44mPj8+1/Yy7r1evXs21jIiIlG8GOweqPDgRlxb3EzV7CKnnTwCQcuYg4ePbUbn/RMYEvkx7Lz9e2rqMWOO11zwWHNvFgegzfNXlMXwqehbnJYiIiORLoW0z8+uvv9KzZ08mTZrExYsXcXNz47XXXmP9+vU89NBDVktOAVxdXenUqRNAjivehoaGsmvXLgACAwPz1GadOnXw9/cHYOnSpdmO79y5k7CwMOzt7enWrZsl/vzzz3P8+PFcf2VYsGABx48fZ+rUqXm/UBERKZcq1O+A74R9uHcdYYmZ04xcXPYmEVO7cXeFCqzt/QLNK19/uino0ll6rvqc38NvfTFCERGRomL1BHXbtm3079+f1157jfDwcBwdHXn66afZsGEDTz/9dJ4XKcqvkSNHYjAYWLlyJUuXLrW843rhwgVeeeUVTCYT3bt3p1GjRlnqde3ala5du7Ju3bpsbY4ePRqA2bNns3nzZkv81KlTlsdyH330UTw99e20iIgULhtHF7wGz6Tmq79hW8nbEk/6dyuh41rifmAly+97jicbdbAcizUm89SmBUzeu5Y0U3pxdFtERCRfDGYrrVZ06NAhPv74Y3bv3o3ZbMbW1pb+/fszevToHB+PLQzz5s1j6tSpmM1matSogYeHBydPnsRoNFKnTh0WL16cLZls2LAhAFOmTKF///7Z2vzggw+YP38+AD4+Pjg7O3PixAnS09Np3bo1c+fOzVfSnXG+BQsW0L59+4Jeao4yFkkKCAhg+fLlVm1bRERKjvSrl7mw6Hnidy3JEne5rQ9eQ75mzcWzvLF9OYlpRsux9l5+fHH3o1R3dvtvcyIiIiXGLd9BDQsL48UXX2TAgAHs2rULs9lMjx49WL16NRMnTiyy5BRgyJAhzJ07l86dO5OUlMTJkyfx9vbmueee4+effy7Qnc533nmH6dOn065dO65cuUJoaCj16tXjtddeY/78+YV2R1hERCQ3tq6e1Hjue2qMWIyNi4clnvDPSsLGNqd7XAS/9hqNf6YtZ3afDyVw5edsjzxZHF0WERHJkwLfQY2OjmbmzJn8/PPPpKWlAdC2bVtee+01ywJDUrR0B1VEpPxJvXKW898+RWLwxixx97ufweXBD3hn/waWh+y3xG0MBl5t2Z3nW3TBxlBoS1GIiIgUSIET1JYtW5KSkoLZbKZRo0a88sordO7c2dr9k3xQgioiUj6ZTSZiNs3i4rI3MacmW+L21erh9cw8lptseW/3alLS0yzH7q7pz+edB+Lp5FIcXRYREclRgRPURo0aYTAYAKhRo4bl9/k6ucHAxo0bb15Q8kQJqohI+ZYSeZSorweTEvbP9aDBBs8H3uZcp6d49q9lhF+9bDnk7eLOl3c/RutqPsXQWxERkexuaR/UjNw2MjKyQPULktSKiIhIzhy9G+MzbjuXVk7i8popYDaB2cTl1ZNxC1rL6qHf8EbIIdb//9YzkQmxPPjbV4xtex/Dmtyhn8siIlLsCpygZmzBIiIiIiWHwc6BKg9OwKVFT6K+eZLUCyEApIT9g3FyJz56eArt2gTywb7fSTebSDObeH/PGvZeCOOjOx6kooNTMV+BiIiUZ1bbZkaKnx7xFRGRzEzJV4le8hqxW2ZniTsHdONc7/E8d+APzifGWeJ+FSvzTdfHaOLp/d+mREREioSW7xMRESmjbJxc8RryFd4vrcTW7fqWM4nBm/D47AFW1fDmTu/6lnho/CV6rZnFshN/F0d3RURElKCKiIiUda4tH8B3UhAut/WxxEyJMSTMGcbHp//g9cbtMXDt/dOU9DRe2fYTb2xfTnJaanF1WUREyiklqCIiIuWAnVtVvJ//Ga9h32HjVNESv7prCb2Wvcyy+k3wcHS2xBf/u4d+v31FePzlnJoTEREpFEpQRUREygmDwYD7nUPwnbgfpwZ3WOJpl89Qec5QVqVfoo1ndUv80KWz9Fz1ORvPHC2O7oqISDmkBFVERKScsa9ah9pv/0GVhyaD7f8v6G82k7ppJp/uncdL1a4vkhRrTGbIxvlM27eedJOpmHosIiLlhRJUERGRcshgY4vnA2/hM24nDjUaWeKpEYfos+JNFjuk4Wx7fTe6GUF/8Ojv33Ex6WpxdFdERMoJJagiIiLlmJPfbfi8v5dK3UZZYuY0I9U3fMqaM1tp62BviW8/F8K9qz5n7/nQYuipiIiUB0pQRUREyjkbR2eqPfE5NV/9DdtKNa4fOLGND7fP4jVzgiV0PjGOh9d+w+zgrWgrdRERsTYlqCIiIgKAS7N78Zt0ENc2/S0xc2IM9/01iyUX9uOeZgQgzWxi/J5feW7LYuKNycXVXRERKYMKnKDu3LkTkxZLEBERKVNsXStTY9QyvJ6ek2U7mmpHN/Jz8DK6JV2yxH4NPcT9q2dy7EpUcXRVRETKoAInqEOHDqVjx4688cYbrFu3jsTERGv2S0RERIqJwWDAvdOT2bajsYk5x5i9c5l4/gD2pjQATsVdpNeaL/g5ZH9xdVdERMoQg7mAL5D06dOH48ePX2vEYMDe3p6OHTvStWtXunbtStWqVa3aUbm5/v37ExwcTEBAAMuXLy/u7oiISBlgNqVz5bf/cXHFe5CeZonHVqnLy353EepSxRIb3KgD77V7AMdMq/+KiIjkR4ETVIDIyEg2bdrExo0b2bdvH2lpaRgMBgwGA02bNqV79+5069aNevXqWbPPkgslqCIiUliSQ/8h6pvBGCOPWmJmOwe+q9eFH7yaYTYYAGhRpRZfd3mMWq4exdVVEREpxW4pQc0sLi6OLVu2sHHjRrZt20ZiYiKG//9h5ePjQ7du3ejatSutW7e2xMW6lKCKiEhhMhmTuLj0TWI2fZElftSrEePqdOGyoysAlRydmXnXIO6u6V8c3RQRkVLMaglqZkajkV27drFx40b++OMPoqOjr53MYMDDw4MuXbrQtWtXOnXqhKOjo7VPX24pQRURkaKQELSWqG+HkR533hJLdqzIB/W7sq3KtaTUgIFXWnXjxRZdsTFo0wAREcmbQklQ/ysoKIiNGzeyadMmQkJCrp3YYMDJyYnbb7+dbt260a1bN9zd3Qu7K2WaElQRESkqaXHRnJ87nIT9q7LE19dowWf17ibZ1gGALjUb8vldA/FwdC6OboqISClTJAlqZmFhYZb3Vg8cOIDJZMJgMDBq1ChGjx5dlF0pc5SgiohIUTKbzcT++S3Ri1/BbLy+mv9558pMaBjIUTdvAGq7evBNl8dpVqVmcXVVRERKiSJPUDO7fPkymzdvZvPmzbRu3Zphw4YVV1fKBCWoIiJSHIxRJ4j6ZjDJp/ZYYiaDDQt8OrDItyMmgw2OtnZM7tCHQf5ti7GnIiJS0hVrgirWpQRVRESKizktlUurJnF59QdgNlniRyvWYHLj+4mscG1V30f82zKxfW+c7OyLq6siIlKCadUCERERuWUGO3uq9B9P7Xf+xL5qHUu8cfw5vt03n8Bzh8Bs5od/99Lvt684E3+5GHsrIiIllRJUERERsZoKDW7Hd8J+3O4cYok5pafyxr/rGH9kJW6piRy6dJbAVTPYHHG8+DoqIiIlkhJUERERsSqbChWpPuw7aoxaio2LhyV+58UTfPv3PFpfDiXWmMSTG+bx8f4NmDI9EiwiIuWbElQREREpFBXbPoTvpIM4B3SzxKoYE/jfoR8ZcXIzdqZUPj2wicEb5nElOaEYeyoiIiWFElQREREpNPYeNan56jqqPvIJBjsHS/zhs/uY9c9C/BKi2XL2X3qunkHQxYhi7KmIiJQEVktQJ02aRHx8vLWaExERkTLCYGODx70v4vPebhxqNbXE6yVc5Kt9C+kfsY+z8Vfo99tXLP53zw1aEhGRss5qCeqiRYsIDAzk559/tlaTIiIiUoY41m6Oz7u7qdTjBUvMwZzO6JDNTDn0Ey6JMbyxfTmvbvuJpLTUYuypiIgUF6slqE2bNuXSpUuMHTuWgQMHcvjwYWs1LSIiImWEjYMT1R77lJqv/oate3VLvN2VUL77ex63XzzB0hN/0+/XLwnXVjQiIuWO1RLUH3/8kQkTJlCpUiUOHjzIgAEDePfdd7ly5Yq1TiEiIiJlhEuze/GdeACXVr0tMfe0JCYF/8Ir/67nZHQoPVfN4A9tRSMiUq5YLUE1GAwMGDCA9evX88gjj2AwGPjxxx8JDAxk8eLFmM1ma51KREREygA7t6p4v7CcakO+xODgbIk/cC6Ir/ctwOvSaQZvmMf0A5u0FY2ISDlh9VV83dzceO+99/j5559p1aoVsbGxTJw4kQcffJB//vnH2qcTERGRUsxgMFDp7uH4TtiHo19rS7x20hVm7v+eR8J28sk/6xm6cQExKYnF2FMRESkKhbbNTKNGjVi8eDFTp06lcuXKHDlyhMcee4w333yTixcvFtZpRUREpBRyqO6Pz9hteD7wFhgMANiZTTwdupVPDi7l8Mnd3L96JkcuRxZzT0VEpDAV+j6offv2Zf369QwZMgRbW1tWrVpFYGAg8+bNIz09vbBPLyIiIqWEwc6BKg9NptZbm7Gr7GOJN4+NYPbf86kbsp3ea77k55D9xdhLEREpTAZzEb4c+u+///Lyyy8TEhKCwWDAz8+Pu+66iyZNmtCkSRPq1auH4f+/NZX869+/P8HBwQQEBLB8+fLi7o6IiEiBpSfEcGHhaOJ3/ZAl/rtXEz6v352Hm97Ne+3ux8HWrph6KCIihaFQ/lVPTk7m9OnThISEcOrUKct/w8PDMRqNGAwGzGYzp0+fJjQ01FLPycmJhg0bsmTJksLoloiIiJQSti6VqPHcIlya9+TCwtGYkuIAuOf8EZrGnmVKwkUeunSWr7s8Rg0X92LurYiIWIvVEtS4uDg++ugjtm3bRlRUVJZVe/97k7Zq1arUrVsXX19fLl68yNGjRzl37hxJSUkcPHjQWl0SERGRUs7t9seo0OB2zn3zJMkntgPgnRzL9AM/sOhKKPfHRjOz6+PcXqNeMfdURESswWoJ6jvvvMOmTZssyaiDgwO+vr7UqVOHOnXqULduXerWrUudOnVwdXXNVv/KlSscOXKEI0eO3FI/du3axdy5czl48CCJiYl4e3sTGBjI8OHDcXZ2vnkDOVi/fj2LFi3i2LFjpKam4uvrS+/evRk8eDD29vbZyoeEhLBq1SqCgoIIDw/n8uXLpKamUq1aNVq1asXjjz9Oq1atbuk6RUREygv7qnWo/dZmLq+ZyqWVE8CUji1mngzbQZsrobwcd56n7hzE8IA79aqQiEgpZ7V3UNu0aUNCQgLDhg3joYcewtfXt8h/SCxcuJDJkydjNpupXr06np6enDx5EqPRSL169Vi8eDGVKlXKV5vTpk1jzpw5APj4+FChQgVOnjxJeno6bdu2Zc6cOTg4OGSpM2/ePKZMmYLBYKBy5cpUq1aN5ORkzp49S0pKCgaDgZdffplnn33WWpcO6B1UEREp+5JO7iLq6ydIjT5liSXYOvB5/W44tB/Ex3c+jKu9YzH2UEREboXVEtSuXbuSkJDA7t27rdFcvh0+fJiHH34Ys9nM+PHjGTBgAAaDgfPnzzNixAiCg4O55557mDFjRp7b3LBhA6NHj8bBwYHp06fTrVs34Nod0uHDhxMREcHQoUN56623stTbt28fUVFRdOzYEU9PT0s8Pj6ezz77jIULF2IwGFi2bBnNmze3zgCgBFVERMoHU1I8F75/kbht87PEN1dtxKrWg/g88FnqV6pWTL0TEZFbYbVtZjZv3szmzZut1Vy+zZo1C5PJRJ8+fRg4cKDl7q2XlxeffPIJNjY2/P777xw7dizPbc6cOROAZ555xpKcAtSrV49JkyYB8P3333P58uUs9Vq3bs3999+fJTkFqFixImPGjKFBgwaYzWbWr19foGsVEREpz2wqVKT603OoMfIHDM6VLPGu0cd4+4+PeXPB6/waeqj4OigiIgVm1X1QXVxcrNlcniUkJLB161YABgwYkO24n58fHTp0AGDdunV5ajM0NNSSzA4cODDb8Y4dO+Lr64vRaGTTpk157qvBYKBOnTrAtdWORUREpGAqthuA38QDODXsbIl5pcQz+Z9F7J7zHJN3rSLNpD3XRURKE6smqMXl6NGjGI1GHBwccn1ktnXr1gB5XiX4wIEDANSuXRsvLy+rtAmQkpJCcHAwAE2bNs1zPREREcnOvnJtar+5kSoPT8Fsc23tRxvg8fBdNPt+BM//9AEXk64WbydFRCTPykSCevr0aQC8vb1zXFUXri1wlLnszWTsz5pR71bbjI+PZ9++fYwYMYKzZ8/SqlUrevXqlae+iIiISO4MNrZ43v8Gvu/ugGrXt5tpFB/Fc+smM/WLJ9l/IbwYeygiInlltW1milNsbCwA7u65b9SdcSyjrDXbjIuLy/F4XFwcbdu2zVbn5ZdfZujQodjZ3Xz4lyxZwrJly/LU55CQkDyVExERKYuc/FpTf+J+zn3/Mgl/fQdABVMqww//wtb/HeX4Y58xqGWPYu6liIjcSJlIUFNSUgByvXsKWLaCyShrzTZze5fU1taW2267DYDLly8TGRlJbGwsv/32G7fddhvt2rW7aT+io6MtjwSLiIjIjdk4ulDzqW+Ib96T8G+fwj752pfId0YfJ3rWQ3zS/WVG9h+Dk13uP99FRKT4lIkE1dHx2n5nqampuZYxGo1ZylqzTScnpxyPu7i48MMPP1j+fPXqVWbPns3XX3/NU089xcKFC2nVqtUN+1G1alUCAgLy1OeQkBAtvCQiIgJUbNOPhvXac/yLgdif3AFAVeNV7vttInNP7qDXyEXU0lY0IiIlTplIUPPy+G5eHtnNzM3NLc9tZpS9GVdXV15++WWuXLnC0qVL+fzzz5k7d+4N6wwaNIhBgwblqf2MfVBFREQE7Dy8afLOn4Sv/oCEXyZgZ07HBuj27yYOjbuN8Ke/4/YW9xZ3N0VEJJMysUiSn58fAJGRkbne8QwPD89S9mYytoIJCwvLtUx+28zQpUsXACWTIiIihcxgY4Nvn7HUHred2Eo1LfF68edw+awPvyx6HZPJVIw9FBGRzMpEgtq4cWPs7e0xGo0EBQXlWGbfvn0AtGzZMk9ttmjRAoCIiAjOnz9vlTYzpKdf25MtLS0tX/VERESkYCrWbUvrace4dFs/S6yCKZUmGz/ht/c7EHv5bDH2TkREMpSJBNXV1ZVOnToB5LjibWhoKLt27QIgMDAwT23WqVMHf39/AJYuXZrt+M6dOwkLC8Pe3p5u3brlq7/r168HoEmTJvmqJyIiIgVn4+hMxxd+InXot8TbO1vi/uH7OPZOU07s/qkYeyciIlBGElSAkSNHYjAYWLlyJUuXLsVsNgNw4cIFXnnlFUwmE927d6dRo0ZZ6nXt2pWuXbuybt26bG2OHj0agNmzZ7N582ZL/NSpU4wdOxaARx99FE9Pzyz1xo0bx969ey13SjPExMQwbdo0Vq1aBcCTTz55i1ctIiIi+RVw11B8Jx0gpPr1L4o9kuMwfzmQ3d8MxZSatxX/RUTE+gzmjEyuDJg3bx5Tp07FbDZTo0YNPDw8OHnyJEajkTp16rB48eJsyWTDhg0BmDJlCv3798/W5gcffMD8+fMB8PHxwdnZmRMnTpCenk7r1q2ZO3dutpWB27RpQ3x8PE5OTpY6cXFxhIWFkZ6ejq2tLS+99BLDhw+36vVnLJIUEBDA8uXLrdq2iIhIWZOWlsaqeaNpuP077M3X30O9UqUuzV5agXOtpsXYOxGR8qlMrOKbYciQITRs2JA5c+YQFBTEpUuX8Pb2JjAwkOHDh+Pi4pLvNt955x1atWrF4sWLOXr0KBcuXKBevXr07t2bIUOG5LhP6qRJk9ixYwcHDhwgOjqauLg4nJycqF+/Pm3btmXgwIGWx4dFRESkeNjZ2dH/6a/Y0uwe0uc/R+3ESwB4XDzFqffa4DHwQ7x7PI/BYCjmnoqIlB9l6g5qeac7qCIiIgUTEh3O5i8e5a7QnVni6QH34P/cQmwrVimmnomIlC9l5h1UERERkYKqV9WHx8ZsZlXXl4mxr2CJ2wb/ztG3A0gI3liMvRMRKT+UoIqIiIgAzvYOvPrE/zj69CL2efhZ4g5XL3L2f/cStfhVLaAkIlLIlKCKiIiI/D+DwcCT7fvi9/p65je8F6PB1nIs7vfpnBrfHmPksWLsoYhI2aYEVUREROQ/OnrXZ9QLPzCz22uEOle2xE0Rhzj9Xmti/vgaLeMhImJ9SlBFREREcuDt4s5nj0zgr0Gfs9K7pSVuSE3mwvyRRH7en/T4i8XXQRGRMkgJqoiIiEguHG3tmNR5ELWHfMX7zR/KsoBSwv5VnB7bQgsoiYhYkRJUERERkZsY5N+WNwd/zNg7X2BvpgWUTLFRnP3fvUQveV0LKImIWIESVBEREZE8aFGlFksGjGHNPW/yRb0uWRZQurLuE85MukMLKImI3CIlqCIiIiJ55OnkwsJ7h+HV81VG3vZ4lgWUUsL2E/Z+Gy2gJCJyC5SgioiIiOSDnY0t77TpyRu9Xua1dsP4JdMCSmZjkhZQEhG5BUpQRURERArgAb9m/NT3Jda0foR3mvbPtoBS6LiWWkBJRCSflKCKiIiIFJB/JS9+7TUa91a9GNZmCHsyLaCUHnNOCyiJiOSTElQRERGRW1DRwYnZXR9neIcHeafZwzkvoDTxdi2gJCKSB0pQRURERG6RjcGG51t0YcG9T7Gx7p3ZF1AKP6AFlERE8kAJqoiIiIiV3F3Tn7W9n6eCTwueu+0JfvFuZTmmBZRERG5OCaqIiIiIFflU9OSX+0fQy78dnzfonvsCSoc3FGMvRURKJiWoIiIiIlZWwc6B6XcOYGL73vxdpUHOCyh9FKgFlERE/kMJqoiIiEghMBgMDG1yOz/2HI69ew3ebvZQrgsopUQeLcaeioiUHEpQRURERApRWy8/fuv9PK29/Pi5VpscF1AKf78tMZu/0gJKIlLuKUEVERERKWTVnd1YFvgMTzbqyCnXajkvoLRgFJGf9SUtLroYeyoiUryUoIqIiIgUAQdbOyZ37MOnnR7G4FDBsoDSFXtnS5mEA2sIG9eShMO/F2NPRUSKjxJUERERkSL0cIPW/HLfCGq5VmJX5Xo83eZJdnvUsRxPj43i7Ec9ubD4FUzG5GLsqYhI0VOCKiIiIlLEmlWpydpez9PZuwFXHFx5p9mDzKjXFaPN9QWUYn7/jPCJHUk5G1yMPRURKVpKUEVERESKgYeTCwt7DGVUs7sxGwysqNWaEa2e4JRLFUsZ45kgwt9vx5WNX2gBJREpF5SgioiIiBQTWxsb3m4TyNddHsPFzoHTrlUZ2epxfq55m6WMOTWZ6EUvEPlpL9LiLhRjb0VECp8SVBEREZFidr9fM9b0Gk0996oYbe35on433mr6ILGOrpYyCUFrCRvbgoSgtcXYUxGRwqUEVURERKQEaFCpGmseGMW9Pk0A2FO5LkNvG8yeyvUtZdLjLnD2kwe4sOhFTMak4uqqiEihUYIqIiIiUkJUdHBidtfHeav1vRgwEOPgwlsBffmsfjfSbB0s5WI2ziR8QgdSzhwqxt6KiFifElQRERGREsTGYMPo5l1YeM9Q3B0qgMHAypq3MbzVY5xzr2kpZ4w4TPj49lz5/XPMJlMx9lhExHqUoIqIiIiUQHfX9Gdt7+cJ8KwBQKhLFYY0H8CvfrdbypjTUohe/DJnP7mPtJhzxdVVERGrUYIqIiIiUkL5VPTkl/tH8GC9VgCk2tjxse8dvN1iIEaXypZyiYc3EDq2BVf/WVlcXRURsQolqCIiIiIlWAU7B6bfOYCJ7XtjZ7j20W13JR8GtBjEad82lnKmq5eI/Lw/5+eNwJSSUFzdFRG5JUpQRUREREo4g8HA0Ca382PP4VSrUBGAOHtnhvnezZJWA8DB2VI2dss3hL3XhuTQfcXVXRGRAlOCKiIiIlJKtPXyY23v52lbzfdawGDgGzdfnm87lFTvAEu51Kh/CZ94O5d//RCzKb2Yeisikn9KUEVERERKES9nN5YGPsOQxh0tsWA7Z3rVD+R020fAYLgWTE/j4o9vEzGtB6mXzhRTb0VE8kcJqoiIiEgp42Brx6QOfZh+58M42toBYDTYMMy5Fkt7vImNx/XtaJKO/0nYuJbE71lWXN0VEckzJagiIiIipdRD9Vuz8v4R1Hb1sMS+TknnhfbPQMtelpgpMYZzsx4havZQ0pPiiqOrIiJ5ogRVREREpBRrWrkmv/UazV01/S2xoKQEelduzoV+EzE4uVricdsXEP7ubSSd3FkcXRURuSklqCIiIiKlnIeTCwu6D+GF5l0ssatpRgZdjmPdgOk41mtviadGn+bMB3dxccV4zOlpxdFdEZFcKUEVERERKQNsbWx4o/W9fNv1CVztHS3xaWHHGdNmCM73vwX/v48qpnQur5zAmcmdMZ4/WUw9FhHJzmA2m83F3Qlr2rVrF3PnzuXgwYMkJibi7e1NYGAgw4cPx9nZ+eYN5GD9+vUsWrSIY8eOkZqaiq+vL71792bw4MHY29tnK3/+/Hl+//13du7cydGjR4mOjsbe3p7atWvTpUsXnnzySTw9PW/1UrPp378/wcHBBAQEsHz5cqu3LyIiIqVDSGw0T29ayInYC5ZYLddKfFunMS5LXyU1+rQlbnB0odpj03G7cyiGjBWARUSKSZlKUBcuXMjkyZMxm81Ur14dT09PTp48idFopF69eixevJhKlSrlq81p06YxZ84cAHx8fKhQoQInT54kPT2dtm3bMmfOHBwcHLLUueuuu4iKigKgUqVK1KxZk9jYWCIjIzGZTFSuXJlvv/2WJk2aWOW6MyhBFRERkQxXU1N4ddtP/Bp6yBJztLVj2m3d6bRrAXHb5mcp79q6H15Dv8bWtXJRd1VExKLMPOJ7+PBhPvjgAwAmTJjAli1bWLFiBRs3biQgIICQkBDGjRuXrzY3bNhgSUBnzZrFhg0bWLVqFatXr6ZWrVrs3buXTz75JFs9BwcHHnnkEX7++Wd27drF8uXL2bRpE2vWrCEgIIBLly4xevRoUlJSrHLtIiIiIv/lau/IV3c/ypg2PbH5/zujKelpvLR3HZ816UWVET9g43J99d+r+1YQOrYFCYd/L64ui4iUnQR11qxZmEwm+vTpw8CBAy2PqHh5efHJJ59gY2PD77//zrFjx/Lc5syZMwF45pln6NatmyVer149Jk2aBMD333/P5cuXs9RbtmwZ77//Pk2bNs3yqEy9evWYMWMG9vb2nD17lq1btxb4ekVERERuxmAwMKLZXSy+ZxgejtdfdVp4fDdPRkfj9PZfODe5/hknPeYcZz/qyYXvX8ZkTC6OLotIOVcmEtSEhARLsjdgwIBsx/38/OjQoQMA69aty1OboaGhlmR24MCB2Y537NgRX19fjEYjmzZtynLMw8MjW/kMNWvWpG7dugCcOnUqT30RERERuRWdvOuzrvcLtKhSyxLbH32GB7YuJ/yxL6g66CMMdtdfWYrZ8Dnh49uRciaoOLorIuVYmUhQjx49itFoxMHBgebNm+dYpnXr1gAcPHgwT20eOHAAgNq1a+Pl5WWVNjNkPNpboUKFfNUTERERKaiarpX4ueezPOLf1hK7mHyVRzbMZVmt1tQetxOHmgGWY8azwYSPb8+VdZ9iNpmKo8siUg6ViQT19OlrK9F5e3vnuKouXFvgKHPZmwkNDc1SzxptwrV3ZTPabtOmTZ7riYiIiNwqJzt7/nfHg3x4R38cbGwBSDebmLj3N14+dYQqY7ZSqccLlvLmNCPRS17j7EeBpF6OKK5ui0g5YlfcHbCG2NhYANzd3XMtk3Eso6w124yLi8tTm6mpqYwfPx6ATp060bhx45vWWbJkCcuWLctT+yEhIXkqJyIiIuXbo/7taOJRg+F/LCIy4dpnntWhQRyPiWL2A+9Qs0VPor59ivSYcwAkHtlE2LiWeD35JRXbPVycXReRMq5MJKgZj8zmdvcUsGwFk9eVc/PTZnJy3hYRmDhxIkFBQbi5uTFhwoQ81YmOjiY4ODhPZUVERETyqmXV2qzt/Tyjtixh27mTAPwbc4H7V89k+p0D6DHxAOfnPcvVfb8AYEq4wrlZg0g4+CtVH/sMW+fcv8QXESmoMpGgOjo6AtfuUObGaDRmKWvNNp2cnG7a3syZM1m6dCkODg58/vnn1KxZM0/9qFq1KgEBATcvyLU7qHlNlkVEREQqO7my6J6h/O+fDXxxaAtwbf/UpzcvZHTzu3lt5DJcts/nwvcvYU5JACBu+0ISj/1F9eHzcW54Z/F1XkTKpDKRoObl8d28PLKbmZubW57bzCibmzlz5li2l/nss8/o2LFjnvoAMGjQIAYNGpSnsv3799fdVhEREckXOxtb3m4TSMuqtXh5649cTb32FNnMoC0EXTzLzLsG4duwM1HfPElyyC4A0i6FETG1Cx73vUGVfu9nWQFYRORWlIlFkvz8/ACIjIzM9Y5neHh4lrI3U6dOHQDCwsJyLZOXNhctWsS0adOwtbXlww8/pGvXrnk6v4iIiEhR6unblDUPjKKBezVL7K/IE/RcNYNjtk7UfudPKvd7H/5/cSXMZq78Oo3wibeTcvZI8XRaRMqcMpGgNm7cGHt7e4xGI0FBOe/XtW/fPgBatmyZpzZbtGgBQEREBOfPny9Qm8uWLWPSpEkYDAYmT57Mfffdl6dzi4iIiBSH+pWqsbrXKO73a2aJnU2Iod9vX7E0ZD+V+4yj9tht2Hs1sBxPCdtP+PttubJhhrajEZFbViYSVFdXVzp16gSQ44q3oaGh7Np17ZGUwMDAPLVZp04d/P39AVi6dGm24zt37iQsLAx7e3u6deuW7fjKlSt57733MJvNvP/++/Tr1y/P1yMiIiJSXFztHfnq7kcZ2+Y+bAwGAFLS03ht+8+8uX05Nr634TthH+5dnrXUMacmE/39S5z9uCepV84WV9dFpAwoEwkqwMiRIzEYDKxcuZKlS5diNpsBuHDhAq+88gomk4nu3bvTqFGjLPW6du1K165dWbduXbY2R48eDcDs2bPZvHmzJX7q1CnGjh0LwKOPPoqnp2eWer///jtvv/02JpOJMWPG5PkdUhEREZGSwGAw8Fyzzvxw79NUdnKxxL//dw/9f/uKqNRUvJ6chfdLq7B1u/5IcGLwRsLGtiB+z4/F0W0RKQMM5oxMrgyYN28eU6dOxWw2U6NGDTw8PDh58iRGo5E6deqwePHibMlkw4YNAZgyZQr9+/fP1uYHH3zA/PnzAfDx8cHZ2ZkTJ06Qnp5O69atmTt3braVgZs2bUpqaioVKlS44V6nd911F88999ytXrZFxiJJAQEBLF++3GrtioiISPkVmRDL8M2LOHDxjCXm6ejCrLsfoZN3fdLiojk/dzgJ+1dlqed2xxPajkZE8q1MrOKbYciQITRs2JA5c+YQFBTEpUuX8Pb2JjAwkOHDh+Pi4nLzRv7jnXfeoVWrVixevJijR49y4cIF6tWrR+/evRkyZEiO+6RmLNSUlJTEP//8k2vbvr6++e6PiIiISFHydnHn5/ue5b3dq1l0fDcAl1MSePT373jjtnsY2ewuvF9YTtxf33Fh8SvajkZEbkmZuoNa3ukOqoiIiBSmZSf+5u2dv5CSnmaJ3evThE/vHICbgxPG8yezbEcDgMGAR8/XqdJ/vLajEZGbKjPvoIqIiIhI4RrQoA0r7x+Bj+v1V6bWhx/hvlUzOHo5Cgev+v+/Hc34rNvR/PYh4eM7kBJxuJh6LiKlhRJUEREREcmzppVr8mvv0XSp2dASC42/RK81X7A8ZD8GWzsq9xmLz9jt2Ff3t5RJOXOQ8Pfbcnntx5hN6cXRdREpBZSgioiIiEi+eDg6M7/Hk7zSsjsGrm1Fk5yeygt/LWXsrpUY09NwqtsW3/F/4971+oKQ5jQjF5e+QcS07qRGhxZT70WkJFOCKiIiIiL5ZmOw4ZVW3ZnfYwjuDhUs8XlHd/Lw2m84lxCLjaMLXoO/oOYrv2JbqYalTNLxvwgb15LYrXPRcigikpkSVBEREREpsK61GrK29/M09fS2xPZFh9Nz1Qx2nAsBwKV5IH6TDuLa7mFLGVNyPOe/e5rIz/uTFnehyPstIiWTElQRERERuSU+FT1Zcf8IBjZoY4ldTL7KI+u/48tDf2I2m7F1rUyNET9Q/dmF2DhXspRL2L+KsLEtuPqffVRFpHxSgioiIiIit6yCnT0fd3qID+/oj8P/r+CbbjYx+e+1DP9jEfHGZAwGA24dH8V30kGcA7pZ6qbHXSDys35Effc0pqT44roEESkBlKCKiIiIiNU86t+O5fc9R02XSpbY2rBgHljzBcevnAfA3rMWNV9dR9XHPsNg72QpF7d1LmHvtiLx+Nai7raIlBBKUEVERETEqlpWrc3a3s/T2buBJRYSG02vNV+w6tRBAAw2Nnj0GI3v+H041rn+aHBq9GkipnYhetlbmFJTirzvIlK8lKCKiIiIiNV5OrmwsMdQXmzR1RJLTDMy8s8feH/3alL/fy9UB+9G+IzZhmefd+H/Hw3GbObKb/8jfHx7UsIPFkf3RaSYKEEVERERkUJha2PD67fdw9xug3FzuP4o77dHtjNw3WyiEuMAMNjZU6Xfe9Qeuw376v6WcsaIQ4SNb8+l1VMwp6cVef9FpOgpQRURERGRQtXDpwm/9hpNY4/qltie86EErvzcshUNQIW67fAdv49K3UZdr5yeyqWfx3JmcmeM544XZbdFpBgoQRURERGRQlfHrQqrHhjJg/VaWWIXk68yaP23fBG0BbPZDICNozPVnvicmq+tw86zlqVs8qndhL3XmisbZmA2mYq8/yJSNJSgioiIiEiRqGDnwPQ7BzC1Yz/LVjQms5kp+9bx9OaFxKYkWcq6NO2B78SDuN0x2BIzG5OI/v4lIv53D6kXw4q8/yJS+JSgioiIiEiRMRgMPN6oPSvuH0Et10qW+PrwI9y3eibBlyItMVuXSlR/Zi7ez/+MrVs1Szzp6B+EjW1B7J/fWe68ikjZoARVRERERIpciyq1WNvrebrUbGiJhcVfovevs1h64u8sZV1b98V3UhCubfpbYqbkeM7PHU7k9D6kxZwrsn6LSOFSgioiIiIixcLDyYX5PZ7ktVY9MGAAICU9jVe3/cRr234iKS3VUtbOrSo1Ri2j+vAF2DhXssQTDv5K6JjmxO9eWtTdF5FCoARVRERERIqNjcGGl1p24/t7nsLD0dkSX3Lib/r9+iVh8ZcsMYPBgNvtj+E7OQjnZvda4qaEy5z78lHOzXqE9KuXEJHSSwmqiIiIiBS7zjUbsL73C9xW1ccSO3w5kvtWzWBD+JEsZe09alLzlV+pNuRLDI4ulnj8nmWEjmnO1QO/Flm/RcS6lKCKiIiISIng7VqJn3oOZ2jj2y2xWGMyQzctYOq+daSZ0i1xg8FApbuH4zvxABX877TE02OjiJzem6jvhpGeEFOU3RcRK1CCKiIiIiIlhoOtHRM79OaLux7B2c7BEp8ZtIVH139HdFJ81vLV6lLrrc1UHfQRBjtHSzxu6zzCxjYnIWhdkfVdRG6dElQRERERKXH61G3Br71G08D9+vYyO6JOEbhqBnvPh2Ypa7CxwSPwZXwm7MOxThtLPO3KWc5+cj9Rc54hPTG2qLouIrdACaqIiIiIlEgNKlVjTa9R9KnTwhI7nxjHw2u/YXbw1mx7oDp6N8Zn7HYqPzgJbO0t8bi/5ly7m3r49yLru4gUjBJUERERESmxXOwdmXnXICa074W9jS0AaWYT4/f8ynNbFhNvTM5S3mBrR+Veb+P7/l4cfW+zxNMuR3D2o56cn/ss6UlxRXoNIpJ3SlBFREREpEQzGAw81eQOfur5LDWc3S3xX0MP0XPVDI5cjsxWx7F2M3zG7aBy/wlZ7qbG/vktYWNbkBC8sUj6LiL5owRVREREREqF1tV8WNfneTp7N7DEQuMv0WvNLH74d2+2R34NdvZU7j0G3/f34OjT0hJPuxTO2f/dy/l5IzD9Z9ElESleSlBFREREpNSo7OTKwh5DeaVldwwYAEhJT+P17T/z8tYfSUw1ZqvjWLs5Pu/uonK/98HWzhKP3fINoWNbkHhkU1F1X0RuQgmqiIiIiJQqtjY2vNKqO9/f8xSVnVws8Z9C/qHXmi84EXMhWx2DnT2V+4zD973/3k0NI+LDezi/YDSm5KtF0X0RuQElqCIiIiJSKnWu2YB1vV+gnZefJXY85jz3r57JipADOdZx9GmBz7s78ezzbta7qZu/JGxcSxKP/lHIvRaRG1GCKiIiIiKlVg0Xd5YGPsOIpndZYolpRp7/awlv7VhBclpqtjoGOweq9HsPn3d34VC7uSWeGn2aiGndOT9vhFb6FSkmSlBFREREpFSzt7FlTNuezO02GHeHCpb4ouO76fvrl4TGXcqxnpNvK3zf241n77Hw/1vYwLV3U8PGNOPqwd8Kve8ikpUSVBEREREpE3r4NGFd7+dpUaWWJXb4ciT3rZ7B2rDDOdYx2DlQpf94fN7dhWPtFpZ42uUIIj/txblvniT96uVC77uIXKMEVURERETKjNoVPVl+33MMbXy7JRZnTOaZzYsYv2cNxvS0HOs5+d2Gz3u7s+2bGr9jEaHvNCV+78+F3ncRUYIqIiIiImWMo60dEzv05qu7H8XV3tESnx28jYfWfsPZqzE51rPsmzphH05121ni6XHnOffFACJnPkxa7PnC7r5IuaYEVURERETKpAfqNOe3XqNp7FHdEvsnOpx7V33O5ojjudZzrBlA7bHbqDLwfxjsnSzxq38vJ/SdpsTtWITZbC7UvouUV0pQRURERKTMqutelVUPjOIR/7aWWExKIoM3zGXavvWkmdJzrGewscWz5yv4TjxAhYadLXFTwmWivnmSyE97kXrpTKH3X6S8UYIqIiIiImVaBTt7/nfHg3za6WGcMr1fOiPoDx5Z/x1RiblvKeNQvQG13txEtSdmYnBytcQTgtYSNqYZMVu+0d1UEStSgioiIiIi5cLDDVqzptco6rtXtcR2Rp3i3pWfseXsv7nWM9jYUKnbCPwmBeHctIclbkqO58K8EUR82APjhZBC7btIeaEEVURERETKjUYe1fm112j61m1piV1KTuDx3+cw5e91pObyyC+AfRVfar66Fq9h32LjXMkSTzr6B2FjW3D5t48w57JKsIjkjRJUERERESlXXOwdmdF5INNu74+jrZ0l/sWhLTy89hsic1nlF8BgMOB+51D8Jh/CpVVvS9xsTOLisjcJn9CB5NB/CrH3ImWbwVzGHprftWsXc+fO5eDBgyQmJuLt7U1gYCDDhw/H2dm5QG2uX7+eRYsWcezYMVJTU/H19aV3794MHjwYe3v7bOVNJhNbt27l0KFDHD58mEOHDnHx4kUANm3aRK1atbLVsYb+/fsTHBxMQEAAy5cvL5RziIiIiJQlRy9HMWLL95yMjbbEKjk682mnh+jh0+SGdc1mM1f3LOPCohdJj79eH4MNHve+ROV+72Pj6FJYXRcpk8pUgrpw4UImT56M2WymevXqeHp6cvLkSYxGI/Xq1WPx4sVUqlQpX21OmzaNOXPmAODj40OFChU4efIk6enptG3bljlz5uDg4JClTlxcHG3bts2pOSWoIiIiIiVMYqqRsbtWsuzkvizxZwI68XbrQBwy3WXNSfrVy0QvfZ24rfOyxO2q+OE15Etcmt5j7S6LlFll5hHfw4cP88EHHwAwYcIEtmzZwooVK9i4cSMBAQGEhIQwbty4fLW5YcMGSwI6a9YsNmzYwKpVq1i9ejW1atVi7969fPLJJ9nq2djY0KRJEwYMGMDEiRNZvHixVa5RRERERKzP2d6BT+58mOl3Poyz3fUbD7ODt9Hvt68Ii790w/q2rp5UH/Ydtd7YgH21epZ42sVQzn7Uk3NfDyYtLvoGLYhIhjKToM6aNQuTyUSfPn0YOHAgBoMBAC8vLz755BNsbGz4/fffOXbsWJ7bnDlzJgDPPPMM3bp1s8Tr1avHpEmTAPj++++5fPlylnqurq6sWLGCiRMnMmDAABo1anSrlyciIiIiheyh+q35rddoGntUt8QOXowgcOXnrDkddNP6zk264jvpIB73vwk2tpZ4/M7vCX0ngLjtC7UljchNlIkENSEhga1btwIwYMCAbMf9/Pzo0KEDAOvWrctTm6GhoZZkduDAgdmOd+zYEV9fX4xGI5s2bSpo10VERESkBKlfqRqrHhjFEw3bW2LxqSk8t2Ux7+z8heS01BvWt3GoQNWHP8D3/b041rn+ypfp6iWiZg/h7EeBGC+cKrT+i5R2ZSJBPXr0KEajEQcHB5o3b55jmdatWwNw8ODBPLV54MABAGrXro2Xl5dV2hQRERGRkq+CnT1Tbu/Hl3c/SkV7R0t8wbFd9FrzBSGxN39c19GnBT7jtlP1kU8wZFooKTF4I2Fjm3N57cfakkYkBzd+47uUOH36NADe3t45rqoL1xY4ylz2ZkJDQ7PUs0abBbFkyRKWLVuWp7IhIdogWkRERMRaetVpTrPKNRm5ZTFBl84CcPRKFD1XzWDK7f14sF6rG9Y32Njice+LuLbuy4UFo0gIWgv8/5Y0S98gftcPeA39Gie/1oV+LSKlRZlIUGNjYwFwd3fPtUzGsYyy1mwzLi4uT20WRHR0NMHBwYXWvoiIiIjkzs+tMivuH8GUv9fy7ZHtACSmGXnxr6XsOHeSie374GzvcMM27Kv44v3yauJ3LyH6+5ctW9KkhO0nfHwHKnUfReX+E7Ct4Fbo1yNS0pWJBDUlJQUg17ungGUrmIyy1mwzOTk5T20WRNWqVQkICMhT2ZCQkELti4iIiEh55Ghrx/vte9Gxel1e2fYTscYkAJae2Mc/F87wZZdHaZRpYaWcGAwG3Do8gkvTe4he8jpx2+ZfO2A2EbNhBvF7f6Lao5/g2vZhy2KfIuVRmUhQHR2vvRuQmpr7S+tGozFLWWu26eTklKc2C2LQoEEMGjQoT2Uz9kEVEREREeu71zeA3///kd990eEAnIi9wP2rZzK+XS8ea9jupsmlrWtlqj89B7fbH+f8/JGknj8BQHrMOc7NegTnpnOpNngmDpm2qxEpT8rEIkl5eXw3L4/sZubm5pbnNjPKioiIiEjZVtO1Ej/d9yyjmt1tiaWkp/HWzhU8s3kRV5IT8tSOc5Ou+E48QOV+72Owu34DJfHw74S904xLKydhSs3bk38iZUmZSFD9/PwAiIyMzPWOZ3h4eJayN1OnTh0AwsLCci2T3zZFREREpPSzt7Hl7TaBLOwxlMpO11foXRceTI+Vn7HjXN4WrrRxcKJyn3H4Tg7CuWkPS9yclsKlFe8RNq4liUc2W73/IiVZmUhQGzdujL29PUajkaCgnDdR3rdvHwAtW7bMU5stWrQAICIigvPnz1ulTREREREpO7rUasjvfV6ks3cDSywqMY6B675l2r71pJrS89SOg1d9ar66lhojFmNbqYYlnhr1LxEf9uDc10+QFpvz51GRsqZMJKiurq506tQJIMctWUJDQ9m1axcAgYGBeWqzTp06+Pv7A7B06dJsx3fu3ElYWBj29vZ069atoF0XERERkVLMy9mNRfcMZVzb+7C3sQXAjJkZQX/Q/7evCIu/lKd2DAYDFdsPxO+DYCr1eB4M1z+mx+9cTOhbjYnZ/CXmPCa9IqVVmUhQAUaOHInBYGDlypUsXboUs9kMwIULF3jllVcwmUx0796dRo0aZanXtWtXunbtyrp167K1OXr0aABmz57N5s3XH684deoUY8eOBeDRRx/F09OzsC5LREREREo4G4MNzzbtzKr7R1LXrYolvj/6DPeu/JyfQ/bnuS1bZ3eqPTYdn/d241inrSVuSorlwoLRhE+8g+TQf6zaf5GSxGDOyOTKgHnz5jF16lTMZjM1atTAw8ODkydPYjQaqVOnDosXL86WTDZs2BCAKVOm0L9//2xtfvDBB8yff20ZcB8fH5ydnTlx4gTp6em0bt2auXPn5rgy8IgRI/jnn+v/eMTExADXFmnKWN3N29ubFStWWOXa4foqvgEBASxfvtxq7YqIiIhI3iSkpvDe7tUsOfF3lni/ui35oGNfKjrkffcHsymd2D++4eJPYzAlZVq402Bzbe/Uvu9j61LJSj0XKRnKzB1UgCFDhjB37lw6d+5MUlISJ0+exNvbm+eee46ff/65QHc633nnHaZPn067du24cuUKoaGh1KtXj9dee4358+fnum3N1atXiYmJsfzKEBsba4ndaIVgERERESl9XOwd+ajTQ3x596O4ZUpGV5w6wL0rP2ffhfA8t2WwsaVStxH4TTlCxQ6PXD/w/3unhr7dmNi/5mA2max5CSLFqkzdQS3vdAdVREREpOSIuHqFF/5ayp7zoZaYrcGG11r1YGSzu7C1yd+9osQjmzi/YDSpUf9miTvVbUfVxz+jQt121ui2SLEqU3dQRURERERKilquHiwLfIZXW3XH5v9f8Uo3m5j2z3oGrf+WyIT8PU3n3KTbtb1TH5yEwcHZEk8+tYczEzoS9d3TpMVdsOo1iBQ1JagiIiIiIoXEzsaWl1t25+eez1LLtZIlvjPqFD1+mc5voYfz1Z6NvSOVe7197bHfdgOyHIvbOpfQNxtx5ffPMaelWqP7IkVOCaqIiIiISCFr6+XH+t4v0rtOc0ss1pjE8D8W8eb25SSlGfPVnn3l2tQY+QO13tyEQ62mlrgpKZboxS8T9l5rEo/+YbX+ixQVJagiIiIiIkXA3bECX9z1CJ90eghnOwdL/Pt/99Bz1QyCL0Xmu03nxnfjO34fVR/7DBvnSpa48WwwEdO6E/nFQFIv5X1hJpHipgRVRERERKSIGAwGBjRow7reL9C8ck1L/GRsNA+s+YKZQX+Qns9VeQ22dnj0GI3f1GO4dR4G//++K8DVvT8R+nYTLq2ajMmYbLXrECksSlBFRERERIpYXfcq/HL/CEY0vcsSSzWlM3Xfeh5c+zWn4y7mu007t6pUf+obfMbtxCnTir5mYxKXlr9L2JimXP1nJdrEQ0oyJagiIiIiIsXAwdaOMW17suTep6nh7G6J/30hjHtXfs6iY7sLlEw61W1L7bHb8Rr2LbZu1Szx1OjTRH7en4gP7yE57IA1LkHE6pSgioiIiIgUo07e9dnY9yX612tliSWmGXlr5woGb5jH+cS4fLdpsLHB/c6h+E09RqV7XgQbW8uxpKObCX+/DVHfDSPtSv7fexUpTEpQRURERESKmbtjBT7vPJCvujxGJcfre5z+cfY43X6ZzprTQQVq19bZnWqPfoLvxP04B3S7fsBsJm7rPE6/2ZBLv0zAlJJwq5cgYhVKUEVERERESogH/Jqxqe9LdK3V0BKLSUnkuS2Lef7PJcSkJBaoXceaAdR8bT3eL6/GwbuxJW42JnLpl/GcfrMRsVvnYc7nAk0i1qYEVURERESkBPFydmN+9yFMvb1flu1oVpw6QPdfprM18kSB2jUYDLi2uA/fiQeoNngmthWrWo6lx0Ry/rthhI9vp/1TpVgpQRURERERKWEMBgOPN2zP731epE01X0s8KjGOR9Z/x7hdq0hKMxasbVs7KnUdgd+043jc/yYGO0fLsZSw/URM687Zz/piPHf8lq9DJL+UoIqIiIiIlFB+bpX5ueezvNU6EPtMCx3NPbqDwFUzOBB9psBt2zq7U/XhD/CbcoSKHQZlOZawfzWhY5tzYdGLpMfnf8sbkYJSgioiIiIiUoLZ2tgwuvndrHlgFA0reVniIbHR9Pn1Sz7ev4FUU3qB27ev6keN576n9rgdONW//fqB9DRiNs7k9Bv+XF77MSZj8q1chkieKEEVERERESkFAip781vv53muaWcMGABIN5v49MAm+v76JSdjLtxS+xXqtaf2mL+oMWop9lXrWOKmpFguLn2D0LcaEfvnd5jT027pPCI3ogRVRERERKSUcLS1Y2zb+/ix5zPUdvWwxA9ejODeVZ/zbfA20m9hJV6DwUDFtg/h+0EwVQb+D5sK7pZjaZfPcH7ucELHNCN+zzKt+CuFQgmqiIiIiEgp06F6XX7v8yKDGrSxxFLS03h/zxr6//YVJ27xbqqNvSOePV+hzof/UqnH8xgyrSacGvUv52Y9Qvj4diQErcVsNt/SuUQyU4IqIiIiIlIKVXRw4qNODzGn22CqOLla4vuiw7l35Wd8dmDTLb2bCmBbsQrVHpuO39RjuN05BAzX04eUsP2c/eQBIqbcTdK/227pPCIZlKCKiIiIiJRi9/g0YVO/l+hTt4UlZjSl87/9G7hv1QwOXoy45XPYV/Gl+rDv8J0chGubB7McS/p3G2c+uIuIT+4nOWz/LZ9LyjclqCIiIiIipVxlJ1e+uOsR5nYbTHVnN0v86JUoeq35gkl7fyvwvqmZOXo3xnv0Mnze34Nz03uyHEsMWkf4e22InDUIY9S/t3wuKZ+UoIqIiIiIlBE9fJqwud8rPN6wvSVmMpv56vBf9PjlM3acC7HKeZz8WlPrtbXUemtz1q1pgKt7fiT0naZEzXmG1EvhVjmflB9KUEVEREREyhA3Byem3t6PZYHP4FexsiUeGn+JAetm89aOFcRZaU9T50Z3UXvMX3i/tAqH2s2vHzClE/fXHELfbMj5BaNJvRhmlfNJ2acEVURERESkDLq9Rj029H2R55p2xsZgsMQXHd9N1xWfsCH8iFXOYzAYcG15P77j91H9uUXYe9W3HDOnGYnd/CWn3/Qn6runMUadsMo5pexSgioiIiIiUkZVsHNgbNv7WP3AKBp7VLfEoxLjGLppAaP+/IFLyVetci6DjQ1uHR7Bb/Jhqg35CjuPmtcPpqcRt3UuoW834dxXj5NyNtgq55SyRwmqiIiIiEgZ16JKLX7r/Txv3HYPDja2lvjKUwe5e/knLA/Zb7X9TA129lS6+xn8pv1LtcEzsavse/2g2UT8rh8IG9OcyBkPkhy6zyrnlLLDYNbOumVG//79CQ4OJiAggOXLlxd3d0RERESkBDoRc4HXtv3EvuisCxh1rdWQqR374e1ayarnM6elErfzey6vmUrq+eyP+Do3D6RyrzFUaHB7DrWlvNEdVBERERGRcqRBpWosv+85JrTvhbOdgyW+OeI4XX/5lPlHd5JuMlntfAY7e9zvHILflGCqP/c9DrWaZjmeGLSOM5Pv5My07iQe2Wy1O7lSOukOahmiO6giIiIikh9n4i/z1o4V/BmZ9c5mU09vJnboTVsvP6uf02wykXBgNZdWf0DK6b+zHXeq1wHPXu/g0uI+DJkWd5LyQQlqGaIEVURERETyy2w289PJf3h/zxpijUlZjvWt25IxbXpSw8W9UM6bePh3Lq2aTPKJ7dmOO9QMoFKP0bh1fBwbR2ern19KJiWoZYgSVBEREREpqAuJ8Uzc+ysrTh3IEne2c+CFFl14JuBOHG3trH5es9lM0vG/uLx6MonBm7Idt3HxxP2up6nUbST2lWtb/fxSsihBLUOUoIqIiIjIrdp7PpR3d6/m0KWzWeK+FSvzfrv76V67caE9epsUspvLqz8g4cCa7AdtbHFt3Q+Pe17Aqf7tevy3jFKCWoYoQRURERERa0g3mVhy4m+m7VvP5ZSELMfurunP+Pa9qOdetdDObzx3nCsbZxK3bT7m/5wfwNGvNR49nqdi+4EYMi30JKWfEtQyRAmqiIiIiFhTTEoin+zfyPxju0g3X1/Z185gw7CATrzUoisVHZwK7fzpCTHEbZ3LlY0zSbsYmu24rXt1KnV9Dve7h2Pn7lVo/ZCiowS1DFGCKiIiIiKF4diVKN7bvZrt50KyxKtWcOWd1j15sH4rbAyFt4Ol2ZROwv7VXNkwg6RjW7IdN9g5ULH9ICrd8wJOvq0KrR9S+JSgliFKUEVERESksJjNZn4LO8yEPb9yNiEmy7FWVWszsX1vWlYt/EWMUsIPcmXDDOJ3LsaclpLtuFPd9rh1eoKK7Qdh6+JR6P0R61KCWoYoQRURERGRwpaUZuTLQ3/xxaEtpKSnZTk2sEFr3modSNUKFQu9H2lx0cRumU3M5i9Jj4nMdtxg54BLq9643TEYl2b3YiiEFYjF+pSgliFKUEVERESkqERcvcLEvb/xa+ihLPGK9o681LIbgxt1pIKdfaH3w5xmJP7vn4n5fQbJp3bnWMbWzQu3jo/i1mkwjrWbF3qfpOCUoJYhSlBFREREpKhtjzzJu7tXczzmfJZ4FSdXng64gycadsDdsUKR9CUl/CCx2xcQv3Mx6XEXcizj6NMStzsGU7HjI9i5VSuSfkneKUEtQ5SgioiIiEhxSDOls/DYbj7a/zuxxuQsx1ztHXmiYQeeDrgDL2e3IumPOS2VhEPriNu+gIQDazCnGbMXsrXDpXlP3O4YjGvLB7RdTQlR5hLUXbt2MXfuXA4ePEhiYiLe3t4EBgYyfPhwnJ2dC9Tm+vXrWbRoEceOHSM1NRVfX1969+7N4MGDsbfP/bGFS5cu8eWXX/LHH39w4cIF3NzcaNu2Lc8++yyNGzcu6CXmSgmqiIiIiBSnS8lXmX5gM4v/3ZPt/VQHG1sert+a55p1po5blSLrU/rVy8TvXkrc9gUkn9qTYxkbF08qtumPS4v7cG7SDRsn1yLrn2RVphLUhQsXMnnyZMxmM9WrV8fT05OTJ09iNBqpV68eixcvplKlSvlqc9q0acyZMwcAHx8fKlSowMmTJ0lPT6dt27bMmTMHB4fs37aEhYXx6KOPcvHiRZydnalTpw5RUVFcunQJe3t7PvvsM7p162aNy7ZQgioiIiIiJcHFpKvMPbqDeUd3ZLujamMwcL9vM0Y2u4tmVWoWab9SIo8St20BcTsW5biwElxbXKlCw864tLgfl+Y9cajeoEj7WN6VmQT18OHDPPzww5jNZsaPH8+AAQMwGAycP3+eESNGEBwczD333MOMGTPy3OaGDRsYPXo0Dg4OTJ8+3ZJQhoSEMHz4cCIiIhg6dChvvfVWlnpms5l+/fpx9OhR7rzzTj799FMqVqxIWloaX3zxBbNmzcLZ2Zn169dTrZr1nntXgioiIiIiJcnV1BS+P76bb4K3cT4xLtvxu7wbMLLZXdxeox4Gg6HI+mU2pZN4ZBNx2xZwdd8KzKnJuZa192qAS/OeuLS4jwoNO2Nj71jw86anYU5LIT0xBlPCFWxcPLB1roTBzlGrDP+/MpOgjhw5kk2bNtG3b1+mTZuW5VhoaCg9e/bEZDKxcuVKGjVqlKc2+/Tpw7Fjxxg1ahQvvPBClmM7d+5kyJAhODg48Oeff+Lp6Wk5tnHjRkaNGkXFihXZtGkT7u7uWeo+/vjj7N27N8fk9lYoQRURERGRkiglPY0VIfuZdehPTsVdzHa8RZVajGp2N4G+TbAx2BRp39KT4kj4ZyUJB38j4fDvmBJjci1rcHTBuUk3XFrch0uL+7D3yPsdYFNKAlf3r+bKb/8jJfyAJe7o0xKP+17HtVUvbBxdbuFKyoai/b9fSBISEti6dSsAAwYMyHbcz8+PDh06ALBu3bo8tRkaGsqxY8cAGDhwYLbjHTt2xNfXF6PRyKZNm7IcW7t2LQCBgYHZktPMfcwoJyIiIiJSljna2jHIvy1/9HuFb7o8TosqtbIcP3gxguF/LKLLik9Z8u9ejP95f7Uw2VZww+2OJ6gx8gfqzThPrbe34HHfGzjUapqtrDklgYT9q7gw7zlOv+xD2LjbuPD9y8T88TWJx7eSHp89+YZryWn0kteJ+uqxLMkpQEr4AaK+eozopW9gSkkojEssVcrEfeSjR49iNBpxcHCgefOc9zVq3bo1O3bs4ODBg3lq88CBAwDUrl0bLy+vXNsMCwvj4MGDPPzww5Z4xjnatGmTY72MeFRUFOfPn8+1fRERERGRssTWxob7/JrS0zeAHedC+OLQn/wVecJyPCQ2mte2/8xH+zcwPOBOhja5HXsb2yLrn8HWDueGd+Lc8E6qDphC6qXwa3dWg9aSeGQzZmNilvIpZw6SciZrfmFbsQoONRrj4N0IB+8m2Hs1IDX6FLF/fH3Dc8du/ooKDTtTsc2D5fpx3zJx5adPnwbA29s711V1fXx8spS9mdDQ0Cz18tqm0Wjk7NmzN6xbo0YN7O3tSU1N5dSpU0pQRURERKRcMRgM3OFdnzu86xN0MYJZh/7k19DDmLn29mFUYhwT9v5KaPwlPujYt9j6aV/Zh0pdn6NS1+cwGZNJOraFhKC1JBz8jdToUznWSY+/SFL8VpL+3Zrv81357X/XtrxRglq6xcbGAuT4OG2GjGMZZa3ZZlzc9Re+r169islkumFdg8GAm5sbly5dylI3J0uWLGHZsmV56nNISEieyomIiIiIlBTNq9Tiqy6PcSr2Il8d/oufTu7DaEoHIDTuUjH37jobBydcmgfi0jwQ82PTSY36l4TDGzBGHCIl8ijGyKOYEi7f0jlSwvaTnhhTrt9FLRMJakpKCsAN9yTN2Aomo6w120xOvr7qV+b2c9p+5kZ1cxIdHU1wcPDNOywiIiIiUorVda/Ch3f058M7+hd3V27KYDDgUKMhDjUa3rRsSsRhwsa2yHPbpsQYyMfiS2VNmUhQHR2vLfWcmpqaaxmj0ZilrDXbdHJyylYv8/G81s1J1apVCQgIuHmHgYiICMueqyIiIiIiUvxsXDzyV965UuF0pJQoEwlqXh7fzcsju5m5ubnluc2MsgCurq7Y2NhgMplyrWs2my2P9maum5NBgwYxaNCgPPVZRERERERKFlvnSjj6tMy2em9OHH1bYVvOE9Qysc2Mn58fAJGRkbne8QwPD89S9mYy7kKGhYXlWianNh0cHPD29s5y/L/OnTtn6afudoqIiIiIlF0GO0c87ns9T2U97nsdg13envgsq8pEgtq4cWPs7e0xGo0EBQXlWGbfvn0AtGzZMk9ttmhx7TnxiIgIzp8/n682M/78999/51gvI169enWqV6+ep/6IiIiIiEjpY7C1w7VVL9y7PHvDcu5dnyv3K/hCGUlQXV1d6dSpE0COK96Ghoaya9cuAAIDA/PUZp06dfD39wdg6dKl2Y7v3LmTsLAw7O3t6datW5Zj9957LwDr1q3L8THfjD7mtS8iIiIiIlJ62Ti6UHXQ/6g+YjGOPi2zHHP0aUn1EYupOvDDcr16b4YykaACjBw5EoPBwMqVK1m6dClm87U9lC5cuMArr7yCyWSie/fuNGrUKEu9rl270rVrV9atW5etzdGjRwMwe/ZsNm/ebImfOnWKsWPHAvDoo4/i6emZpV737t1p2LAh8fHxvPbaa8THxwOQnp7OZ599xt69e6lQoQJPPfWU9QZARERERERKLBtHFyq2eZDaY/6izqfh+E4Oos6n4dQe8xcV2zyo5PT/GcwZmVwZMG/ePKZOnYrZbKZGjRp4eHhw8uRJjEYjderUYfHixdmSyYYNry0NPWXKFPr3z76k9QcffMD8+fMB8PHxwdnZmRMnTpCenk7r1q2ZO3dujisDnz59mscee4xLly5ZVtaNiori0qVL2Nvb8+mnn9KjR49CGAUREREREZHSqUwlqHDt0ds5c+YQFBREYmIi3t7eBAYGMnz4cFxcsn8rcbMEFWDt2rUsXryYo0ePkpqaio+PD71792bIkCE33Cf14sWLfPnll/zxxx9cuHABNzc32rRpw3PPPUeTJk2sc8EiIiIiIiJlRJlLUEVERERERKR0KjPvoIqIiIiIiEjppgRVRERERERESgQlqCIiIiIiIlIilO9dYAWAV199ldOnTxd3N0REREREpISoU6cOH3/8cZGfVwmqsG/fPs6dO1fc3RARERERkRLi8uXLxXJeJahCYmIiAE5OTtSrV6+Ye1N2hISEkJycrHG1Mo1r4dC4Fg6Na+HR2BYOjWvh0LgWDo1r4cgY14wcoagpQRVq1apFbGws9erVY/ny5cXdnTKjf//+BAcHa1ytTONaODSuhUPjWng0toVD41o4NK6FQ+NaODLGtVatWsVyfi2SJCIiIiIiIiWCElQREREREREpEZSgioiIiIiISImgBFVERERERERKBCWoIiIiIiIiUiIoQRUREREREZESQQmqiIiIiIiIlAhKUEVERERERKREUIIqIiIiIiIiJYISVBERERERESkR7Iq7A1L8BgwYQHR0NFWrVi3urpQpGtfCoXEtHBrXwqFxLTwa28KhcS0cGtfCoXEtHMU9rgaz2WwuljOLiIiIiIiIZKJHfEVERERERKREUIIqIiIiIiIiJYISVBERERERESkRlKCKiIiIiIhIiaBVfEsps9nM/v372bx5M/v27ePUqVNcvXqVihUr0qRJE/r27UuvXr0wGAzZ6jZs2PCGbVepUoXt27fnevzIkSN888037N27l7i4OKpVq0aXLl0YOXIknp6et3xtxW3t2rXs2LGD4OBgLly4QExMDPb29vj5+XHXXXfx5JNP4uHhkWPdhIQEvvnmG9avX09kZCTOzs60aNGCp556ivbt29/wvLt27WLu3LkcPHiQxMREvL29CQwMZPjw4Tg7OxfGpRapgo6r5mv+/fnnnwwfPhyAmjVrsnnz5hzLab7mT17GVfP15mbMmMHMmTNvWOb999/nkUceyRZPTU1l/vz5rFq1ivDwcOzt7WnUqBFPPPEE99xzzw3bLOtjW9Bx7dq1K2fPnr1hvaCgIBwdHXM8dubMGWbNmsX27du5fPkylStX5o477mDEiBHUrl07fxdRwv3555/8+OOPHDhwgJiYGNzd3alduzbt27fn+eefx84u68dqzde8yc+4ar7mLiIigm7duuWpbP/+/ZkyZUqWWEmar1rFt5TauXMnQ4YMsfy5du3auLm5cfbsWWJiYgC4++67mTFjBg4ODlnqZnyAatq0abZjAJUqVeLLL7/M8by///47r7zyCqmpqVSuXJnq1atz+vRpEhMTqVq1Kj/88EOp/wvep08fjh07hoODA1WrVsXDw4PLly8TGRkJQOXKlZkzZw6NGjXKUu/y5cs8+uijnD59GgcHB+rXr8/ly5eJiorCYDAwbtw4HnvssRzPuXDhQiZPnozZbKZ69ep4enpy8uRJjEYj9erVY/HixVSqVKmwL71QFXRcNV/zJyEhgQceeMAyrrklUpqv+ZPXcdV8vbmMRKpy5cr4+vrmWGbYsGF07949SywlJYWhQ4eyb98+bG1tqV+/PklJSYSHhwPwzDPP8Nprr+XYXnkY24KOa8YHfn9/f1xdXXOsN3/+/Bzn8/79+3nqqadITEzE3d2dWrVqcebMGeLi4nBxcWHevHk0b9781i+umKWlpfH222+zatUqAGrUqEGVKlWIiYkhKiqK1NRU/vnnH1xcXCx1NF9vriDjqvmau+joaF544YVcj6ekpBAcHAzAxIkTGTBgQJZjJWq+mqVU2r59u7lr167m+fPnmy9evJjl2IoVK8xNmzY1+/v7mz/88MNsdf39/c3+/v7mM2fO5OucUVFR5hYtWpj9/f3N06dPN6empprNZrM5Li7OPGzYMLO/v7+5f//+ZpPJVPALKwGWLl1q3rNnj9loNGaJHzt2zPzAAw+Y/f39zffdd1+2es8995zZ39/f3K9fP3NUVJTZbDabTSaTecmSJWZ/f39z48aNzUeOHMlW79ChQ+ZGjRqZGzZsaF6yZIll/KKiosz9+vUz+/v7m0ePHl0IV1q0Cjqumq/5M3HiRLO/v795xIgRZn9/f3OXLl1yLKf5mj95HVfN15v7/PPPzf7+/uY333wzX/Uy/h907drVHBISYolv3LjR8jNv06ZN2eqVl7Et6Lh26dLF7O/vb961a1e+6iUkJJjvuOMOs7+/v/ntt982Jycnm81mszk5Odn81ltvmf39/c2dO3c2JyUl5avdkmjMmDFmf39/84MPPmgODg7OciwxMdG8cePGbD/bNF9vriDjqvlacMuXLzf7+/ubmzdvbo6Pj89yrKTNVyWopVR8fHy2v7SZffnll2Z/f39zu3btzOnp6VmOFfQD1KRJk8z+/v7mxx57LNuxmJgYc+vWrXOdwGXFwYMHLeN38uRJSzw4ONjs7+9vbtSokTk0NDRbvddffz3XD+4ZH3jfeOONbMdOnz5tbtSokdnf39989OhR615MCZLbuJrNmq/5sX//fnOjRo3MI0aMMP/888+5JlKar/mT13E1mzVf86IgiVR0dLQ5ICDA7O/vb965c2e249OnT7d84fJf5WVsizpBnTt3rtnf39/co0ePbJ9HUlJSzN27dzf7+/ubFyxYkK92S5qdO3da/s7/90N9bjRfb64g42o2a77eiscff9zs7+9vfvXVV7PES+J81SJJpZSrqyv29va5Hu/cuTMAMTExXL582SrnXL9+PUCWRwIyuLu7ExgYCFx717Csqlu3ruX3SUlJlt9njE2HDh1yfLRq4MCBwLX3LBITEy3xhIQEtm7dCuQ8rn5+fnTo0AGAdevWWeEKSqbcxvVWlLf5mpqayrhx43BycuLdd9+9YVnN17zLz7jeivI2X/Nr8+bNpKamZpljmQ0aNAiA4OBgyyNpGTS2hSPj73i/fv2yfR5xcHCgf//+QOkf17lz5wLw1FNP5fpI6X9pvt5cQcb1VpSX+ZqbiIgI9u7dC2C51gwlcb5qkaQyKjk52fJ7JyenHMvMmjWLCxcukJ6ejpeXFx06dOC+++7L8bn9c+fOcf78eQDatm2bY3tt2rThxx9/5ODBg1a4gpJp3759ADg7O1OnTh1L/MCBA8C1MchJ8+bNcXBwICUlhaNHj9K6dWsAjh49itFoxMHBIdf3Hlq3bs2OHTvK5bhmpvl6Y19//TX//vsvb7/9NtWrV79hWc3XvMvPuGam+Xpzx44d49VXXyU6OhoXFxcaNmzI/fffT4MGDbKVzZizGXPxv7y8vKhVqxYREREcOHAAHx8foHyObX7GNbMlS5YwZ84ckpOTqVKlCm3atKFXr145Jg/p6ekcPnwYuPG4Ahw6dIj09HRsbW1v8cqKXkpKimVRs44dO3Ly5EmWLl1KSEgIDg4ONG7cmIceeoiaNWtmqaf5emMFHdfMNF/z55dffsFsNuPt7Z0tCS2J81UJahn166+/AtCoUaNcv5n6+eefs/x5xYoVfP7558yYMYOAgIAsx0JDQwGwt7fP9UNaxgvQZ86cITU19YZ3eEsTk8lEdHQ027dv56OPPgLgtddey/LSfsb4ZPyl/S97e3tq1KhBWFgYp0+ftvwjcPr0aQC8vb1zHa+MNjPKlhV5GdfMNF9zFxISwtdff01AQABPPPHETctrvuZNfsc1M83Xmzt69ChHjx61/Hnz5s189dVXDB48mDfffDPLB8SbzdmMYxEREVnmXnkc2/yMa2a//fZblj+vWbOGzz77jI8//pg77rgjy7GzZ8+SmpoKkOviJxn/r4xGI5GRkaVyUZ9jx45ZrnPfvn1MmDDB8meAP/74g2+//ZYpU6bwwAMPWOKarzdW0HHNTPM178xmMytWrACuLVhpY5P1AdqSOF+VoJZBhw8fZsmSJQCWLREy69atG3369KFRo0ZUr16dhIQEdu7cyaeffsqZM2d46qmn+OWXX6hRo4alTsbKwO7u7jluXQNYVu00mUxcvXo1161YSot58+ZlW4K7efPmTJ061fIIdYbY2Fjg2vjkJuNYXFxcgepllC3t8jOuoPl6M2azmbFjx5KWlsb48ePz9K2v5uvNFWRcQfM1L6pVq8YLL7zAnXfeSa1atXB1deX06dMsXryYJUuWMH/+fOzs7HjjjTcsdQo6Z8vT2BZkXAHatWtHhw4daNasGd7e3qSmprJv3z4+//xzjhw5wogRI/jhhx+yfLGSMa5Arit2Z/5/FRsbWyo/8EdHR1t+P2HCBJo0acLYsWNp1KgR586d49NPP2Xt2rW89dZb1K1blyZNmgCarzdT0HEFzdeC2LNnDxEREUD2x3uhZM5XvYNaxly8eJHnn3+etLQ0evTowf3335+tzKxZs7j33nvx9fXF0dERT09P7r//fpYtW4a3tzcxMTHZ9lJLSUkBuOE3H5kfXcsoX5p5eXlx22230aJFC6pWrYrBYODo0aOsXLkyy19QyN/4ZH78Oj/1ysKYQv7GFTRfb2bx4sX8888/PPbYYzRr1ixPdTRfb64g4wqar3kxcOBARo0aRfPmzfH09MTBwYGGDRsyfvx4yzYG8+fPt3yggqKZs5nLl0YFGVeAqVOn0rdvX+rVq0eFChVwc3OjS5culg/5KSkp/O9//8tSx2g0Wn6f29hmHtfM/09Kk4SEBMvvnZycmD17tuUVCF9fXz755BMaN25MamoqX331laWs5uuNFXRcQfO1IDLunrZp0ybHu6Qlcb4qQS1D4uPjeeaZZ4iMjCQgIICpU6fmq76np6fljuvGjRsxZ9oiN2PD48yPYPxX5n8ActsguTTp2bMnP/zwA8uWLWPbtm388ssvtGjRgjVr1jB48GDS09MtZfMzPpnfCc5PvbIwppC/cb0RzVc4f/48n3zyCV5eXrz00kt5rqf5emMFHdcb0XzNm6eeeopq1aqRlpaWZZ/ZopizmcuXNbmN6404OTlZ5v/u3buzPBWR+UNnbmObeVxzWwujpMs8H/r165ftDpONjY1lT/pt27ZhMpmy1NN8zVlBx/VGNF9zlpCQYFnIqF+/fjmWKYnzVQlqGZGQkMDTTz/NkSNHaNCgAd99912BVkVr1aoVcO22feZHIjI/tpf5g1VmGeVtbGyKZEW2otaoUSO+/vprPDw8OHr0qOU9XwA3Nzfgxo81ZhzLKAt5exwyL49elGY3GtebKe/zdeLEiVy9epWxY8fm6xo0X2+soON6M+V9vuaFra0tLVq0ACAsLMwSt8acLc9jm9u43sxtt90GXHs878yZM5Z45r/fmedyZpn/X5XWfw8y97tevXo5lslYhT4hIcEyFpqvN1bQcb2Z8j5fc7J+/XoSExOpUKGCZUXd/yqJ81UJahmQlJTEs88+y4EDB/Dz82Pu3LkFfich8236zHey/Pz8gGvfkpw7dy7Huhn/GNSqVatUvrSfF66urrRr1w64ttx2hozxye0Hf2pqKpGRkVnKZv59ZGRkrt9AZSzpnbleWZPbuN5MeZ+vR44cAWD8+PHccccdWX5NnjwZuLbKXkbsn3/+ATRfb6ag43oz5X2+5lXG9aWlpVliN5uzkPPc09hel9O45rUOZJ2zNWvWtBz777YTGTLiDg4OeHt757u/JUHmLdBymxuZ7wpl3OnTfL2xgo7rzZT3+ZqTjMd777333lwTxJI4X5WglnIpKSmMGDGCvXv3UrNmTebNm0fVqlUL3N6JEyeAa/8wZH6R3Nvbm2rVqgHw999/51g3I96yZcsCn780yPjhnvkfv4xrztgu5b+CgoJITU3F0dGRxo0bW+KNGzfG3t4eo9FIUFBQjnUz2iyP43ozmq/XXLx4Mduvq1evAtd+sGfEMpJKzde8ye+43ozma95kjFPmVSEzrju3LwPOnz9vebcy8xhpbK/LaVxv5t9//7X8PnM9Ozs7mjZtCtx8XJs1a1Zqt+zw8vKybHWS+Y5cZhnxzH+vNV9vrKDjejPlfb7+15kzZyx7n+b2eC+UzPmqBLUUS01N5fnnn2fnzp14eXkxf/78LCtD5ldaWppl4+QOHTpgZ5d1ked7770XgGXLlmWrGxsba9kEObdHCMqCmJgY9uzZA5Dlg3vG2OzevTvHb6CWLl0KQOfOnbNso+Lq6kqnTp2AnMc1NDSUXbt2AeVzXG9E8/Xa9hHHjx/P8VfGSsk1a9a0xNq3bw9ovt5MQcf1RjRf82bLli2WRCrzVhHdunXD3t4+yxzLLGPl+iZNmuDr65vlmMY293G9mdmzZwNQv359vLy8shzLGNcVK1Zk+5LGaDSyfPlyoPSPa8+ePQFYvXp1jneff/rpJ+DaPpAZf681X2+uION6M5qvWWXsfVqzZs0b/pwqifNVCWoplZ6ezquvvsqff/5J1apVmT9/fp6WxP7oo49YsWKF5S5AhnPnzvHCCy9w4MAB7OzsGDVqVLa6w4YNw8nJib179/LZZ59Z7nTFx8fz6quvEh8fT5MmTejatat1LrIY7Nmzh1mzZmVb5RCuPXo6bNgw4uPj8fLyyvKXLSAggC5dupCens7LL7/MhQsXgGtbVSxdupSVK1diY2PDiBEjsrU7cuRIDAYDK1euZOnSpZbn+C9cuMArr7yCyWSie/fuNGrUqJCuuvAVdFw1XwuH5mvh0Hy9uRMnTvDuu+9y7NixLHGTycSaNWt49dVXAejSpQvNmze3HK9SpQoDBw4EYMyYMZw6dcpybPPmzXz77bcA5XZsCzqu3333HQsXLuTKlStZ6l25coV3333XsrjKCy+8kO2cAwcOpGrVqoSFhfHee+9ZVuhMSUnhvffeIzw8nGrVqvHwww9b9VqL2rBhw6hYsSIRERFMmDDBcp1ms5kFCxbwxx9/YDAYsmzrp/l6cwUZV83XvDObzfzyyy/AtbunuW0DAyVzvhrMub3VKiVa5h84NWvWzPZNUWbjxo2z7CE1cuRINm3ahK2tLbVr18bd3Z34+HhOnz6N2WzG0dGRSZMm0bt37xzbWrduHa+++ippaWlUrlyZ6tWrc/r0aRITE6lSpQqLFy/O9u1KabJx40bLX8CqVatSrVo1bG1tOXfunGXfLi8vL77++utsd/ouX77MI488QmhoKA4ODtSvX58rV65w7tw5DAYDY8aM4YknnsjxvPPmzWPq1KmYzWZq1KiBh4cHJ0+exGg0UqdOHRYvXoynp2fhXnwhKui4ar4W3PLly3n77bepWbNmjqt2ar4WzI3GVfP15o4ePUrfvn2Ba/vjeXt7Y2trS3h4uGURjjZt2vDll19mWYwDrm1vMGTIEPbv34+trS0NGjQgMTHR8m7UU089xZtvvpnjecv62BZ0XCdPnsyCBQswGAzUrFkTT09PkpOTOXXqFGlpadjY2PDKK6/wzDPP5Hjeffv28fTTT5OYmIi7uzu1atUiIiKC2NhYnJ2dmTt3bql+FDXDjh07GDFiBMnJyVSsWBE/Pz+ioqKIjo7GYDDw+uuvM2zYsCx1NF9vLr/jqvmad7t372bw4MEYDAY2bNhw05tYJW2+KkEtpTI+JOXFggULLLf2t27dyoYNGzh8+DAXLlwgJiYGe3t7atWqRceOHXn88cdz3CMps+DgYL7++mv+/vtv4uLiqFatGl26dGHkyJFUrlz5lq+tOF26dInVq1eze/duTp48yaVLlzAajbi5uVG/fn26du3KQw89lOuL5levXmX27NmsW7eOyMhInJ2dad68OcOGDaNDhw43PPfOnTuZM2cOQUFBJCYm4u3tTWBgIMOHD8/ymGVpVNBx1XwtuJslqKD5WhA3GlfN15uLi4vj+++/58CBA4SEhHD58mWMRiPu7u40adKEBx54gAceeCDXd8CMRiPz5s1j9erVhIeHY29vT+PGjXn88cctj5rlpiyPbUHH9cCBA/z6668EBQURGRlJTEwMtra2eHl50a5dOx599NGbvnYRHh7OrFmz2L59O1euXMHDw4NOnToxcuTIPD3ZVVqEhoby9ddfs2PHDi5duoSrqyutWrVi6NChlkX+/kvz9ebyM66ar3n31ltvsWLFCtq1a8fChQvzVKckzVclqCIiIiIiIlIi6B1UERERERERKRGUoIqIiIiIiEiJoARVRERERERESgQlqCIiIiIiIlIiKEEVERERERGREkEJqoiIiIiIiJQISlBFRERERESkRFCCKul85mQAAATnSURBVCIiIiIiIiWCElQREREREREpEZSgioiIiIiISImgBFVERERERERKBLvi7oCIiIjk7u2332b58uUFqtu8eXN+/PHHfNXp06cPx44dY+7cudx+++03LT9jxgxmzpwJwPHjx3Mt9/PPPzNu3DjS09Np06YNX331FRUrVsxX30REpOxTgioiIlKCRUREUKVKlWzxxMREEhMTAXI8DtCuXbt8nevs2bMcO3YMNze3fNe9kXnz5jF16lTMZjNdunRh+vTpODk5Wa19EREpO5SgioiIlGALFy7MMT5u3DiWLVtGjRo12LJli1XOtWnTJgA6d+6MnZ11PiJMnz6dL7/8EoBevXoxdepUq7UtIiJlj35CiIiIlELBwcEANGnSxGptZiSo3bp1u+W2zGYzEydO5Pvvvwfg8ccfZ+zYsRgMhltuW0REyi4lqCIiIqVMWloaJ06cAKyXoMbGxvL3339jb29P586db6mttLQ03nrrLVavXg3AqFGjeOGFF6zRTRERKeOUoIqIiJQyJ0+exGg0AtZLULds2UJaWhp33nknrq6uBW4nJSWFF198kT/++AODwcA777zD4MGDrdJHEREp+5SgioiIlDIZj/cCBAQEWKVNazzee/XqVUaMGMGePXuws7Nj8uTJ9O3b1yr9ExGR8kEJqoiISClz9OhRACpXroyXl9ctt2c0Gtm6dSsGg4GuXbsWuJ3BgwcTHByMo6Mj06dPv6W2RESkfLIp7g6IiIhI/mTcQW3cuLFV2tu5cyeJiYk0bdr0lhLejH499NBDSk5FRKRAlKCKiIiUIiaTiWPHjgEl6/FegFatWgHw/fffs2DBglvul4iIlD9KUEVEREqR06dPk5iYCFhngSSz2czmzZsB6N69+y219e2333LbbbcBMHnyZObNm3er3RMRkXJGCaqIiEgpkvH+KVjnDmpQUBDR0dH4+PjQoEGDW2rL1dWVb7/9ltatWwMwZcoU5s6de8t9FBGR8kMJqoiISCmS8Z5nxYoVqVWr1i23Z63HezO4uLjw7bff0rZtWwCmTp3Kd999Z5W2RUSk7FOCKiIiUoocOXIEuLZAksFguOX2Nm7cCFgvQQVwdnbmm2++oV27dgB8+OGHzJ4922rti4hI2aUEVUREpBSx5gJJoaGhhISE4OHhYXl31FoyktT27dsD8NFHH/HNN99Y9RwiIlL2KEEVEREpJSIiIoiJiQGss8VMxuO9Xbp0wdbW9pbb+68KFSrwzTff0LFjRwA+/vhjvvrqK6ufR0REyg4lqCIiIqVExuO9YJ07qNZ+/zQnTk5OfPXVV9xxxx0AfPrpp8yaNavQziciIqWbElQREZFSIiNBrVChAnXr1r2lti5fvsz+/ftxcnKyJI+FxcnJiS+//JJOnToB8NlnnzFz5sxCPaeIiJROBrPZbC7uToiIiEjR+umnnxgzZgxdunTRY7ciIlJi6A6qiIhIOZTxeG/37t2LuSciIiLX2RV3B0RERKTo3XbbbTRp0qRQ3z8VERHJLz3iKyIiIiIiIiWCHvEVERERERGREkEJqoiIiIiIiJQISlBFRERERESkRFCCKiIiIiIiIiWCElQREREREREpEZSgioiIiIiISImgBFVERERERERKBCWoIiIiIiIiUiIoQRUREREREZESQQmqiIiIiIiIlAj/B6ACB+xLFMBXAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10, 6))\n", "plt.title(\"Surface tension of water\")\n", "sns.lineplot(data=literature, x=\"Temperature (K)\", y=\"Surf. Tension (l, N/m)\", label=\"NIST\")\n", "sns.lineplot(data=dft_data, x=\"Temperature (K)\", y=\"Surf. Tension (l, N/m)\", label=\"PC-SAFT (2B)\")\n", "sns.scatterplot(x=[cp.temperature / si.KELVIN], y=[0.0], clip_on=False, color=colors[1], label=\"PC-SAFT (2B), critical point\")\n", "plt.ylabel(r\"$\\gamma$ / Nm$^{-1}$\")\n", "plt.xlabel(r\"$T$ / K\")\n", "\n", "plt.xlim(250, 700)\n", "plt.ylim(0.0, 0.08)\n", "sns.despine(offset=10)\n", "plt.legend(frameon=False);" ] }, { "cell_type": "markdown", "id": "35af1b14", "metadata": {}, "source": [ "## Concluding remkars\n", "\n", "Hopefully you found this example helpful. If you have comments, critique or feedback, please let us know and consider [opening an issue on github](https://github.com/feos-org/feos/issues)." ] } ], "metadata": { "kernelspec": { "display_name": "feos", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.5" } }, "nbformat": 4, "nbformat_minor": 5 }