{ "cells": [ { "cell_type": "markdown", "id": "2f323a90-1e4f-4a27-a495-38dbf8dad3e3", "metadata": {}, "source": [ "# Surface tension diagram of a pure substance" ] }, { "cell_type": "code", "execution_count": 1, "id": "ef5e5353-7984-4a37-8035-20809c876817", "metadata": {}, "outputs": [], "source": [ "from feos.si import *\n", "from feos.dft import HelmholtzEnergyFunctional, PhaseDiagram, SurfaceTensionDiagram\n", "from feos.pcsaft import PcSaftParameters\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import pandas as pd\n", "\n", "sns.set_context('talk')\n", "sns.set_palette('Dark2')\n", "sns.set_style('ticks')\n", "colors = sns.palettes.color_palette('Dark2', 1)" ] }, { "cell_type": "code", "execution_count": 2, "id": "4fb0714a-7ae2-46bc-833a-0136ac3f7cd9", "metadata": {}, "outputs": [], "source": [ "parameters = PcSaftParameters.from_json(\n", " substances=['methanol'], \n", " pure_path='../parameters/pcsaft/gross2002.json'\n", ")\n", "functional = HelmholtzEnergyFunctional.pcsaft(parameters)" ] }, { "cell_type": "code", "execution_count": 3, "id": "38b998ad-4fd0-4a1e-8fa3-991a13fc0860", "metadata": {}, "outputs": [], "source": [ "phase_diagram = PhaseDiagram.pure(functional, 150 * KELVIN, 25)" ] }, { "cell_type": "code", "execution_count": 4, "id": "a48aff0e-cdb8-4553-96ff-57328272c184", "metadata": {}, "outputs": [], "source": [ "st_diagram = SurfaceTensionDiagram(\n", " phase_diagram.states,\n", " n_grid=1024\n", ")" ] }, { "cell_type": "code", "execution_count": 5, "id": "1bb266d3-8dbf-4bbf-833d-42bfee960fe8", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAAEpCAYAAAAkgq3EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAyGElEQVR4nO3de1iUZf4/8PfMcFBhUsHCEyhkIgNqKpjgmRC0Tcqva65r6g9Pqyul5rEyzbRVsXITK3EFddVNV013TQ1kPayCphy2TTnkgQJJPIHBiALD3L8/3CFHGAbGYY7v13V5XfHcw/DhCX3zPM/9uW+JEEKAiIjIikjNXQAREVFjMbyIiMjqMLyIiMjqMLyIiMjqMLyIiMjqMLyIiMjqOJi7gLqoVCr07t0bFRUVWsdbtGiBzMxMAMDp06exbt06XL58Ge7u7nj99dcxefJkc5RLREQmZpHhlZeXh4qKCqxZswadO3euOS6VPrxQzMjIwIwZMzBixAjMnj0b6enpiImJgRACU6ZMMVPVRERkKhYZXjk5OZBKpYiIiEDz5s1rja9fvx4KhQJr164FAAwaNAgqlQobN27EhAkT4OTkZOqSiYjIhCzymVd2dja8vLzqDK6KigqkpaUhPDxc63hERARKS0uRkZFhqjKJiMhMLDK8cnNz4eTkhClTpqBXr14ICgrC0qVLoVQqUVBQgKqqKnh7e2t9TqdOnQA8vOVIRES2zWJvGyqVSowZMwYzZszAhQsXEBsbi7y8PLz11lsAAFdXV63PcXFxAQAolcpa7xcYGFjv11MqlWjXrh2OHz9upO+AiIiakkWG17p169CyZUv4+voCAIKCguDu7o4FCxYgJSUFACCRSOr8XM2kjsYQQqCsrMzwgomIyKQsMrz69u1b69iQIUO0Pn78CkvzsVwur/W5aWlp9X49fVdmRERkWSzumdedO3ewZ88eFBQUaB1/8OABAMDd3R0ymQz5+fla45qPH38WRkREtsfiwksikWDp0qXYsWOH1vHDhw9DJpMhJCQEgYGBSEpKwqNbkSUmJkIulyMgIMDUJRMRkYlZ3G1DNzc3jB8/Htu3b4erqysCAwORnp6OjRs3Yvz48ejUqRNmzpyJqKgozJ07F6NGjUJmZibi4+Mxb968OqfXExGRbZFY4k7KVVVV2Lp1K/bt24fCwkJ4eHjgtddew9SpU2smZBw9ehTr169HXl4ePDw8MH78eIOXh9I889L3bIyIiCyDRYaXqTG8iIisi8U98yIiItKH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFbHwdwFkPFVqKpw+4ESSfnZuFD8MwLc2iPcyw9tmrnC2cHR3OURET0xiRBCmLsIcwsMDAQApKWlmbmSJ1ehqsLZG3mISt6GSnV1zXEnqQxbwiahn4c3A4yIrB5vG9qY2w+UtYILACrV1YhK3obbD+6ZqTIiIuNheNmYpPzsWsGlUamuRlJ+lokrIiIyPoaXjblQ/HO941l6xomIrAHDy8YEuLWvd7yDS2sTVUJE1HQYXjYm3MsPTlKZzvG/5p5FbskNE1ZERGR8DC8b06aZK7aETaoVYA4SKZrJHHHzfhn+7/AXOH/jR/MUSERkBJwqD9uaKg9o+rzuISk/C1nFP0Ph1h7hXgrcKP8FU45tx637SjjLHPDFkN8j3Eth7nKJiBqN4QXbC6/6/FR2B+MTE/Bj2R1IJRJ8+MIrCPX0ZUMzEVkVhhfsK7wA4PZ9JSYe3YL/3ikEAMgkElQ/8mPAhmYisnR85mWH2jR3xd9HTEdfj84AoBVcABuaicjyWUV4RUdHY9iwYVrHTp8+jdGjR6Nnz54IDQ1FQkKCmaqzTq6OzhjhFaBznA3NRGTJLD68/vGPf+Do0aNaxzIyMjBjxgz4+PggNjYWI0eORExMDOLj481UpXXKuVtU7zgbmonIUln0qvI3btzAhx9+iLZt22odX79+PRQKBdauXQsAGDRoEFQqFTZu3IgJEybAycnJHOVanQC39thdz7hCT8MzEZG5WPSV15IlS9C/f38EBwfXHKuoqEBaWhrCw8O1XhsREYHS0lJkZGSYukyrpa+h+ZkWchNWQ0TUcBZ75bVnzx5cvHgRX3/9NWJiYmqOFxQUoKqqCt7e3lqv79SpEwAgLy8P/fr10xrTzCbUpaysDHK5/f1DrWlormsVegB44+QuqNRqvOLT0wzVERHpZpHhVVhYiFWrVmHVqlVwc3PTGisrKwMAuLq6ah13cXEBACiVStMUaQOcHRzRz8Mbp0Yv0Gpo9ndrj/kpe3G19DZmnfwSBcoSzOo+GBKJxNwlExEBsMDwEkLgnXfeweDBgxEREVHnOACd/5BKpbXvhOrr39J3ZWbLnB0c0cG1FaIUIVrH//HyHzHt2HacLcrD6vRvkPfLbbzZcwiOXfuBzcxEZHYWF147d+5Ebm4uDh48CJVKBeDXwFKpVDW39x6/wtJ8bI+3/5pCa+cW2Bk+BfNP78X+q//B7stp+PvlNGg6wnYDWHH+EJuZicgsLC68EhMTUVJSggEDBtQa8/f3x/vvvw+ZTIb8/HytMc3Hjz8LI8M5yxywftBYtHZugYTsVDy+FIummfnU6AXo4NrKHCUSkZ2yuPBavnw57t3TXtnhs88+Q3Z2NjZs2ICOHTviyJEjSEpKwqRJk2puHyYmJkIulyMgQHfjLTWeRCKB91NtdI5rmpkfv+1IRNSULC68fHx8ah1r1aoVnJyc0L17dwDAzJkzERUVhblz52LUqFHIzMxEfHw85s2bh+bNm5u6ZJvH3ZmJyNJYdJ+XLsHBwYiNjcWVK1cwa9YsHDx4EAsXLsS0adPMXZpN0rc7s1/rdiaqhIjoIa4qD/tbVb6xCpUlGLjvozp7wQBguJcCGwaPQzNO2iAiE7HKKy8yLV27M0vx8HnjN/lZeO2bv+DW/TJzlEdEdohXXuCVV0PUtTvzME8/fHU1E2szjkJAoL1LS2wNm8Q1EYmoyTG8wPB6Ukn5WYg+uQvlqkq0cHDCugG/xfNPe3J3ZiJqMgwvMLyMIav4OqKSt6Hw3l1IAEi5OzMRNSE+8yKjULi1w9cjZ6G7e3sIcHdmImpaDC8ymqebyzHKp5fOce7OTETGwvAio8q9e6PecTY0E5ExMLzIqPQ1NHMmIhEZA8OLjErf7sw5JUWoVqtNWBER2SKGFxmVroZmze5rO384h4nJW3G3otz0xRGRzeBUeXCqvLHV1dAc2rEbErJTEJ+VAgDoLHdHQthEdG3lYeZqicgaMbzA8DKlfVcysTBlHyqqVXBxcMLHA36LXmxoJqJGYniB4WVq392+hqn/2o7r5b8AAGRsaCaiRjL4mVdVVRUmTpxozFrITvRs0xGHRkajh3sHAGxoJqLGMzi8hBA4f/68MWshO/JMCzY0E5Hh6t1Jub4rK95tpCeVc7eo3nE2NBORLvWG13/+8x9ERUXBzc2t1phKpeIzInoiAW7tsbue8W7coZmIdKg3vHx9fdG9e3eEhYXVGquoqMDatWubrDCyfeFeflhx/pDOHZqTC7Ix5rk+eMqpmYkrIyJLV+8zr1dffVXnmIODA6Kjo41dD9kRfTs0n7p+Gb85uAG5JfWvl0hE9odT5cGp8uZUV0NzuJcCJ67lYum5g6ioVqGFgxPWhIxCX4/O7AcjIgAMLwAML0v13e1rmHZsO36+97AfTAoJ1GA/GBE1cqq8Wq3m9HgymZ5tOuJI5BsIfKYTAGgFF8B+MCJ71qjwevDgARuTyaTcm7ni5c7ddY6zH4zIPjW6SZl3GcnUskvYD0ZE2hodXhKJRP+LiIxI3waXz3FleiK7w/28yOLp2+Dy75fTcU1ZYsKKiMjcGF5k8XT1g8kkEkggQU5JEYb/MxYnC38wU4VEZGr1rrBBZAmcHRzRz8Mbp0YvqNUPlltShDmn9qC44h5eT9qCBb2HIbrHEEgl/L2MyJY1qs+rvLwcvXv3Rk5OTlPWZHLs87Juhcq7mH58B767fQ0A8GJHX7zdZzjOFOWxoZnIRjUqvCorK/Huu+/a3JqGDC/rV1GtwrJvD2JH7rd1jrOhmci2NOreipOTk0mCSwiBrVu3IiIiAj169EBkZCQOHjyo9ZrTp09j9OjR6NmzJ0JDQ5GQkNDkdZHlcpY5YHXIKLwX9FKd42xoJrItFvlgIC4uDjExMXj11VcRFxeH/v37Y/78+Th8+DAAICMjAzNmzICPjw9iY2MxcuRIxMTEID4+3syVk7k5SXU/xmVDM5HtMHjCxoEDB5CSkoJbt25BrVbXGpdIJNi2bVuj37eqqgoJCQkYN24cZs6cCQAIDg7GhQsXsGPHDrz00ktYv349FApFzVXgoEGDoFKpsHHjRkyYMAFOTk6Gfltk5S7oaVhmQzORbTAovNatW4e4uDg4OjrC3d0dUqnxLuBkMhm2b9+OVq1aaR13dHREeXk5KioqkJaWhjlz5miNR0REYPPmzcjIyEC/fv2MVg9ZF30bXDrJOMGWyBYY9Dd5//79GDBgAGJjY9G8eXOjFiSVSuHr6wvg4bOvO3fu4KuvvkJqaio++OADFBQUoKqqCt7e3lqf16nTw8Vb8/LyGF52TN8Gl3/NOYtnmsvxRs+hnE5PZMUMCi+lUomIiAijB9fjkpKS8OabbwIAhgwZgsjISGRnZwMAXF1dtV7r4uJSU9vjNLMJdSkrK4NcLjdGyWRmmobmqORtWgHmKJHCU+6Gq6W3sTbzKDJuFeDTQa+hlXMLM1ZLRIYyKLwGDhyIs2fPYsyYMcauR4tCocCOHTuQm5uLTz/9FNOnT6+5XahrjUVj3sIk61NfQ7Pc0Rmr0r/B9txv8a9rOXjpnxsQO2gs2ro8xU0uiayMQeH13nvvISoqCvPmzUNYWBjc3d3rDJOgoKAnKs7T0xOenp4ICgqCq6srFi1aVLOq/eNXWJqP67qC0te/pe/KjKyLs4MjOri2QpQipNbYqpBR6POMFxal7ke+shi//WYT1EKN6v/9XO0GsOL8IfaEEVk4g8Lr559/RllZGQ4dOlQzff1RQghIJJKaW3yNcffuXZw4cQLBwcHw8Ph1tXCFQgEAuHbtGmQyGfLz87U+T/Px48/CiB732y59oHBrh8nJf8W1e3drjWt6wk6NXoAOrq1MXh8R6WdQeH3wwQcoLS3FlClT0LlzZzg4GG8Gl1qtxuLFi/HHP/6x5nkXAKSkpAAAunfvjsDAQCQlJWHSpEk1V3yJiYmQy+UICAgwWi1kuxRu7TGxWzD+lH6kznFNT1hdV29EZH4Gpc6lS5cQHR2NadOmGbseuLm54fe//z02bdqEZs2aoXv37khPT0dcXBzGjBkDHx8fzJw5E1FRUZg7dy5GjRqFzMxMxMfHY968eU0+iYRsx5XSW/WOsyeMyHIZFF5t27Zt0okRb7/9Ntq1a4e9e/ciNjYWbdu2xRtvvIGpU6cCeNi0HBsbi/Xr12PWrFnw8PDAwoULMXny5CariWyPvp6wbq3bmawWImqcRi3Mq7Fnzx7ExsYiISEBXbp0aYq6TIoL89qnQmUJBu77SGdP2AsenfGX0Alwa+Zi4sqISB+DrrxycnIglUoRGRkJT09PtGnTBjKZ9kaBhi4PRWQqunrCpJBADYFvb/yI4f9cj7ihr6PX055mrJSIHmfQlVdoaGiDXnfs2LFGF2QOvPKyXxWqKtx+cK9WT1jq9St45+wB3FdVwUkqw3tBL2GYpx+OFuSwH4zIAhgUXraG4UV1yS25gWnHtuNq6W0Av16RaXCPMCLz4XIURDr4tvbAoZHRGNqhKwBoBRfAPcKIzInhRVQPuVMzDO3gq3Oce4QRmQfDi0iPiyXX6x1nPxiR6TG8iPQIcGtf73gnubuJKiEiDYYXkR7hXn5wksp0jm/NOYP/3CowYUVExPAi0kPTD/Z4gMkkEjhLHVBUXor/O7wRO3PPmalCIvvToKnyGzZsMOjNo6OjDfo8U+NUedJHVz9Y8QMlZp3cVTOdfuxzgVjZ7xU059R5oibVoPDq1q1bw97ssT29DNkSxRwYXvQkSisfYO6pvyPxf7MO/d3aY2W/SFy48zMbmomaSIPCq7CwUO8bKZVKrFu3DidOnICDgwMmTpyIhQsXGqXIpsbwoiclhMDn35/EmoxEqOv4K8WGZiLjMsoKG4cPH8bq1atx8+ZN9O7dG++//z66du1qjPpMguFFxnLgSiai/133WvVOUhk3uCQykieasFFQUICpU6di3rx5qKysxMqVK/G3v/3NqoKLyJhKKu7rHGNDM5HxGLSqfFVVFTZt2oS//OUvqKiowKhRo7BgwQK0bt3a2PURWZULehqW2dBMZByNDq+zZ89i+fLlyMvLw3PPPYdly5bV3HYjsnf6NrhU2/0y2ETG0eDbhsXFxZg/fz6ioqJQVFSEefPmYf/+/Qwuokfoa2jefTkNH54/ApWODTCJqGEaFF5ffvklhg8fjkOHDiE0NBSHDx/GtGnT4OBg0F1HIpulq6HZUSKFv1s7AMAXF07i9aQtKOZq9EQGa3Sf1+O9XDrfWCJBVpZ1PJzmbEMyJl0Nza2cmuGT744h7sK/AQAdXFrhs8G/QzuXlkjKz2ZPGFEjNCi8Fi9e3ODQetSqVasMKsrUGF5kSgfz/ot5p/eiXFUJR6kMaqFGteAml0SNwZ2UwfAi08spKcL/S96Ga8qSOsfZE0ZUPy7MS2QG3Vq3xUTffjrH2RNGVD+DZ1wcOHAAKSkpuHXrFtRqda1xiUSCbdu2PVFxRLbsSumtesfZE0akm0HhtW7dOsTFxcHR0RHu7u6QSnkBR9RY+nrCFHo2wSSyZwaF1/79+zFgwADExsaiefPmxq6JyC6Ee/lhxflDqNTR85V5Kx/jq/vCScaWFKLHGXTJpFQqERERweAiegK6esI083q/uvofjP3mL7hZXmb64ogsnEGzDWfPng0HBwd8/PHHTVGTyXG2IZlLXT1hYZ5+2PXDOXz63+MAgLYtnsJng36HjvLW7Acj+h+Dwuv27duIiopC165dERYWBnd39zr7wIKCgoxSZFNjeJElSvzpImaf+juUVRVwkEghINgPRvQ/BoXXf//7X7z55psoKiqqM7SEEJBIJNxJmegJXb57ExOPbkW+srjOcfaDkb0y6EnwBx98gNLSUkyZMgWdO3fmGodETaRLq2cwwfcFfJh+pM5xTT9YlCLExJURmZdBqXPp0iVER0dj2rRpxq6HiB5zmf1gRLUYNNuwbdu2TdrbpVar8eWXX2LkyJHo1asXwsLCsGrVKiiVyprXnD59GqNHj0bPnj0RGhqKhISEJquHyJwC9PR7sR+M7JFBCTR16lRs27YNly9fNnY9AIDNmzdjxYoVGDJkCD777DNERUXhwIEDmD17NgAgIyMDM2bMgI+PD2JjYzFy5EjExMQgPj6+SeohMid9e4Rd+uUmqutY5YbIlhl02zAnJwdSqRSRkZHw9PREmzZtIJM91qti4PJQQghs3rwZY8eOxbx58wAAISEhaN26NebOnYvs7GysX78eCoUCa9euBQAMGjQIKpUKGzduxIQJE+Dk5GTIt0VkkTT9YFHJ27QamiUABIC/5pzFNWUJNgweh6ecmpmtTiJTMujK6/jx45BKpWjbti2qqqpw/fp1XLt2TetPQUGBQQXdu3cPkZGRePnll7WO+/j4AHj4vC0tLQ3h4eFa4xERESgtLUVGRoZBX5fIUjk7OKKfhzdOjV6AFS9EYtxzgVjxQiROj16IqG7BAIBj13Ix8uvPcPWX+p+PEdkKg668jh07Zuw6ari6umLJkiW1jicnJwMAFAoFqqqq4O3trTXeqVMnAEBeXh769dNerVszFV6XsrIyyOXyJymbqEk5Oziig2urWrMKVwS/goA2HfB26n5c+eUWXv76M6wbMAYB7u3Z0Ew2zSrmuH/33XfYtGkTwsLCUFb2cKkcV1dXrde4uLgAgNakDiJ7MPa5QHRp+QymHduOm/fLMPXYdkglkpqG5t0AVpw/xIZmsikWH17p6emYMWMGOnbsiJUrVyIvLw8AdO7sXNcsSH3Nx/quzIgsXZ9nvHBoZDQmHd2KrJLrWitxAA/7waKSt7GhmWyGRe9lcvjwYURFRaFdu3bYunUrWrduXXN77/ErLM3HvP1H9qqdS0v8tktvnePc4JJsicWG15YtW/DWW2/h+eefx86dO/HMM88AALy8vCCTyZCfn6/1es3Hjz8LI7InuXdv1DvOhmayFRYZXnv27MHq1asxYsQIbN68WetqytnZGYGBgUhKSsKjyzImJiZCLpcjICDAHCUTWQQ2NJO9aNAzr2HDhiEkJAQhISHo168fWrZs2WQF3blzBx9++CE6dOiA8ePHIytL+zaHl5cXZs6ciaioKMydOxejRo1CZmYm4uPjMW/ePO4xRnZN3waXl365CbVQQyqxyN9biRqsQavK79q1C2fOnMG3336L0tJS+Pn51YRZnz59jNoUfODAASxatEjneExMDF555RUcPXoU69evR15eHjw8PDB+/HhMnjzZoK/JVeXJVlSoqnD2Rp7OhmYAGObph/WDxkLOhmayYo3aEkUIgYsXLyI1NRVnzpypaQju3bs3goODERISYpW37RheZEvq2uAytGM3bLr4b2zLOQsA8G3lgYSwiegkdzdztUSGMWg/L43KykqcP38eZ86cQWpqKnJyciCXy/HCCy+gf//+GDt2rDFrbTIML7IXO3PP4d0zB6ASarR2boENg36HLq2eZkMzWZ0nCq/H3b17F2fOnKn5c/ToUWO9dZNieJE9OVt0FdOP7URxxT3I/tcvyR2aydoYNbysFcOL7E1+WTEmJCXgSuntOse5QzNZOk45IrJDXnI3jOvaV+c4G5rJ0jG8iOzUpV9u1jvOhmayZAaF19WrV41dBxGZGBuayZoZFF6RkZFYvXo1V3AnsmL6dmguq3pgwmqIGseg8Bo7dix27NiB8PBw7Nmzx9g1EZEJaHZofjzANPs1xGQkYcnZf0ClY7UOInMyeLbhpUuX8Kc//QlnzpyBQqHAu+++iz59+hi7PpPgbEOyV3U1NA9o3wUfnj+M5Gs5AIDB7Z/D50N+j5bOXHqNLMcTT5U/evQo1qxZg8LCQrz00ktYsGAB2rZta6z6TILhRaRNLdRYk56Ez74/AQDweaoN1oSMQk7JDTYzk0UwSp9XZWUlEhISEBcXBwCYNm0apk6datQ1D5sSw4uobnsvZ2Bhyr46F/plMzOZk1GblG/cuIGFCxfi3LlzaN++PcaOHQs/Pz8oFAq4u1vuGmoMLyLdjvz4PaYd31nnGJuZyVwatCVKXX766Sfk5OTg6tWrNX/y8vJQXl4OACgsLMQnn3wCyf+Wn2nTpg1OnTplnKqJyGSKyst0jmmamaMUISasiMjA8Fq5ciV27txZsxmkm5sbOnfujBEjRsDb27vmj6OjI7Kzs5GVlYWcnByjFk5EpnFBT7Mym5nJHAwKr3379qFv376YPXs2unTpgqeeekrnaz09PREeHm5wgURkXgFu7bG7nvF2LZpuc1oiXQzq85oyZQrmzJmD3r171xtcRGT99DUzJ2Sn4vyNH01XEBG4qjwATtggqo+u3ZkdJFI0c3CEsqoCTlIZYvqPxm+79DZjpWRPGF5geBHpU1czc7iXAveqKjD9+A5c/uUWACC6xxAs7B0OqYRrflPTYniB4UX0JH6puI8/nvgbTv58CQAQ4aXA230icOrnK2xopibD8ALDi+hJqdTVWPbt19iWcwbAw/URH/2HhQ3NZGy8tieiJ+YgleHD4Fcwv9cwANrBBTzsB4tK3obbD+6ZvjiySQwvIjKalk66F+/l7sxkTAwvIjIaNjSTqTC8iMho9O3O/FwrDxNVQraO4UVERqOvoXnflQzcrGetRKKGYngRkdHo2p1ZJpFAAuBi8XW8/PUGZBVfN0+BZDM4VR6cKk9kTLoamr+7VYC5p/fgnqoSLRycsGHw7xDupTB3uWSlGF5geBGZSlbxdUQlb0PhvbuQQIJZPQbjmWZyXCy5zmZmahSGFxheRKZ0634ZJif/FZm3C2qNsZmZGorPvIjIpJ5uLseng16DFJJaY2xmpoay+PDKzs6Gv78/ioqKtI6fPn0ao0ePRs+ePREaGoqEhAQzVUhEjXWy8BLUtdbheIjNzNQQFh1eV69exR/+8AeoVCqt4xkZGZgxYwZ8fHwQGxuLkSNHIiYmBvHx8WaqlIgag83M9KQM2km5qalUKuzevRsff/wxHB1r3/dev349FAoF1q5dCwAYNGgQVCoVNm7ciAkTJsDJycnUJRNRI+jbnbn4QTmEEJBIat9aJAIs9MorPT0dH330ESZPnoz58+drjVVUVCAtLQ3h4eFaxyMiIlBaWoqMjAxTlkpEBtDXzJxYkIW3Tu9BRbVK52vIvllkeD377LNITk5GdHQ0ZDLtH/CCggJUVVXB29tb63inTp0AAHl5eSark4gMo6uZ2VEiRf92zwIA9lzOwGtHNuHWfa7IQbVZ5G3DNm3a6BwrK3v4g+zq6qp13MXFBQCgVCprfY5mKnx97ymXyxtbJhEZyNnBEf08vHFq9IJazczuzi2wOTsVa9ITkX4rH785uAFxQ8bjmRZyJOVnc4NLAmCh4VUfTVuarnvhUqlFXkwS0WOcHRzRwbUVohQhtcaiewzBcy2fxhv/3o2f7/2C3x7ZhGqhhkqoAQC7Aaw4f4g9YXbM6sJLc4X0+BWW5uO6rqD0NR/ruzIjItOL6OSPA7+ZiUlHt+B6eWmtcU1P2KnRC9DBtZXpCySzsrrLFC8vL8hkMuTn52sd13z8+LMwIrJeCrd2mNQtWOc4e8Lsl9WFl7OzMwIDA5GUlIRHV7ZKTEyEXC5HQECAGasjImPLK7tT7zh7wuyT1YUXAMycORMZGRmYO3cuTp48iT//+c+Ij4/HH/7wBzRvrnsbciKyPvo2uFToGSfbZJXhFRwcjNjYWFy5cgWzZs3CwYMHsXDhQkybNs3cpRGRkenrCful8j64vrj94ary4KryRJasQlWFszfyEJW8DZXq6prjEqBmdcSxzwXiT8GvwllmdXPQyEAMLzC8iCxdXRtcDmzfBTEZiTj800UAQO+nvbAp9HW0bfGUmaslU2B4geFFZK2EENjw3xOIyUiCgIBHczk+GzwOnvLWbGi2cQwvMLyIrN2/CnIQffJLlFVVwEEihYBA9SP/tHGTS9tjlRM2iIge9aJnN3w9Mhqd5G5QCbVWcAHc5NIWMbyIyCY82/JpvN71BZ3jbGi2LQwvIrIZl0tv1TvOhmbbwfAiIpuhr6HZr3U7E1VCTY3hRUQ2Q19D87HCXJRWPjBhRdRUGF5EZDN0bXIpxcMtlE4U/oDfHNyA7OIic5RHRsSp8uBUeSJbUldD8zBPP/zrWg6Wn/salepqNJM5YmW/SAxs34X9YFaK4QWGF5G9+O/ta/jD8Z0oUJYAeHhFpgb7wawRbxsSkd3o0aYjDke+gZC2PgCgFVwA+8GsCcOLiOxKa+cWiPDy1znOfjDrwPAiIruTVXK9/nH2g1k8hhcR2R19/WBuzVxNVAkZiuFFRHZHXz/YXy6ewpasVG5yacEYXkRkd3T1gzlIpHimuRyV6mq89+0/8f+St+HOA6WZqqT6cKo8OFWeyB7V1Q8W7qWAs1SGlWlHsPdKBgDgmeZyxIT8H/zc2rInzIIwvMDwIqLa9l/5D945sx9lVRUA2BNmaXjbkIioDqOefR6Jr8xGd/eHkzvYE2ZZGF5ERDp4yd0w+tneOsfZE2Y+DC8ionpkl9S/iC97wsyD4UVEVA99PWE/lRWjvKrSRNWQBsOLiKge+nrCUouuIvTAJzh+LdeEVRHDi4ioHrp6whwlUozp0htOUgdcU97FhKNbEH1yFwrLSlCoLMGWrFTMO70XW7JSUagsQYWqykzfgW3iVHlwqjwR1U9XT1ibZi4ovHcXC1O/wtmiPACAq6Mz7qsqUS04rb4pMbzA8CKiJ6MWauy6lIYV5w7V9IU9zkkqw6nRC9DBtZVpi7NRvG1IRPSEpBIpft+1L2YGDNb5Gk6rNy6GFxGRkfykLK53PO3mj6YpxA44mLsAIiJbEeDWHrvrGT/04wU8/e1BzOoxBE85NsPtB0qul2ggPvMCn3kRkXEUKkswcN9HqFRX1/u65jJHhHl2wzc/XUSVUNcc58SOhrPq24Zff/01fvOb36BHjx4YMWIEDhw4YO6SiMiO6ZpW7ySVIT50Ahb2Dkdr5xa4X12Fgz9+rxVcANdLbAyrvfI6cuQI5s6di4kTJ2LgwIFITk7Grl278Omnn2L48OGNei9eeRGRsdQ3rd7ZwRFllQ8w6+SXOFZPU/OKFyIRpQh57D15i/FRVhtew4YNQ0BAANatW1dzbM6cOcjNzcWRI0ca9V4MLyIypXmn92L3Jd3/3rRp5oqp/v0R2tEXPvI2+Pbmj4hK3qZ1O9LebzFa5W3DgoIC5OfnIzw8XOt4REQErl69ioKCAjNVRkSkn771Em8/UGJ1eiLC/7EewftiMCFpS63naPZ+i9EqZxtevXoVAODt7a11vFOnTgCAvLw8eHp61hzXXFnpUlZWBrlcbuQqiYjqFu7lhxXnD9U5scNBIsWrPs/j2xt5KFCW4NZ9pc730fSOPXqL0V5YZXiVlZUBAFxdXbWOu7i4AACUSt3/s+sikUgYXkRkMpqJHQ25FajvFqO9bslileGleUwnkUjqPC6Vat8N5bMsIrIkzg6O6OfhjVOjF+ic2KGhr3dMoecWpK2yyvDSXCU9foV17949rXEiIkvl7OCIDq6t9N7yq+8Wo5NUhnAvv6Yq0aJZ5YQNzbOu/Px8reM//fST1jgRkbWrr3dsS9gktGnmquMzbZtVXnl16tQJHTt2xDfffINhw4bVHE9KSkLnzp3Rvr19XkYTke1pzC1Ge2KV4QUAs2bNwttvv42WLVtiyJAhOHbsGI4cOaLV90VEZAsaeovRnlhtkzIA7Nq1CwkJCbh+/To8PT0xffp0vPrqq+Yui4iImphVhxcREdknq5ywQURE9s1qn3mZw9ChQ2sapImIqOHkcjmOHz9utPdjeDXC9evXIYRgHxl+XeWE54Ln4lE8F7/iufhVWVlZo1c+0ofh1Qia5ai4YgdX4n8Uz8WveC5+xXPxK33ryxqCz7yIiMjqMLyIiMjqMLyIiMjqMLyIiMjqMLyIiMjqMLyIiMjqMLyIiMjqcG1DIiKyOrzyIiIiq8PwIiIiq8PwIiIiq8PwekR2djb8/f1RVFSkdfz06dMYPXo0evbsidDQUCQkJNT63O+//x4TJkxAr169MGDAAHzyySeoqqoyVelGoVar8eWXX2LkyJHo1asXwsLCsGrVKq0FNe3lXAghsHXrVkRERKBHjx6IjIzEwYMHtV5jL+fiUdHR0Rg2bJjWMXs6DyqVCj169ICvr6/Wn169etW8xp7Ox/nz5zFu3Dj07NkTAwYMwIoVK3Dv3r2a8SY9F4KEEEJcuXJFDBw4UHTt2lVcv3695nh6errw9/cX8+fPFydPnhSffPKJ8PX1FZs3b655zY8//ih69+4tpkyZIk6cOCHi4+NFQECAWL58uTm+FYPFxcUJPz8/8dFHH4mUlBSxY8cO0bdvXzF58mQhhH2diy+++EL4+fmJzz//XKSmporVq1eLrl27ikOHDgkh7OtcaBw4cEB07dpVhIWF1Ryzt/Pwww8/iK5du4r9+/eLzMzMmj/fffedEMK+zkdmZqbw9/cXb7zxhkhJSRF/+9vfRGBgoJgzZ44QounPhd2HV1VVldixY4fo1auX6Nu3b63wmjRpkhgzZozW58TExIjAwEBRUVEhhBDinXfeEYMHD675WAghdu7cKfz8/ERRUZFpvpEnpFarRVBQkHj//fe1jh86dEh07dpVZGVl2c25qKysFEFBQeKDDz7QOv7666+LcePGCSHs5+dCo6ioSAQFBYlBgwZphZe9nYd//vOfolu3bqK8vLzOcXs6H+PHjxfjx48XarW65tiOHTvEiy++KMrLy5v8XNj9bcP09HR89NFHmDx5MubPn681VlFRgbS0NISHh2sdj4iIQGlpKTIyMgAAKSkpGDp0KJycnGpeM3z4cFRXV+P06dNN/00Ywb179xAZGYmXX35Z67iPjw8A4NKlS3ZzLmQyGbZv347p06drHXd0dERFRYVd/VxoLFmyBP3790dwcHDNMXs8D9nZ2fDy8kLz5s1rjdnT+SguLkZaWhrGjRsHiURSc3z8+PFITk6GVCpt8nNh9+H17LPPIjk5GdHR0ZDJZFpjBQUFqKqqgre3t9bxTp06AQDy8vJw//59XL9+vdZr3Nzc4Orqiry8vKb9BozE1dUVS5YsQZ8+fbSOJycnAwAUCoXdnAupVApfX194eHhACIHbt29j06ZNSE1NxdixY+3q5wIA9uzZg4sXL+K9997TOm5v5wEAcnNz4eTkhClTpqBXr14ICgrC0qVLoVQq7ep8/PDDDxBCoGXLlpgzZw6ef/559OnTB8uWLcODBw9Mci7sfjPKNm3a6BzT7ISq2YRSw8XFBQCgVCp1vkbzOmPvHmpK3333HTZt2oSwsDC7PRdJSUl48803AQBDhgxBZGQksrOzAdjHuSgsLMSqVauwatUquLm5aY3Z489ETk4OlEolxowZgxkzZuDChQuIjY1FXl4e3nrrLQD2cT6Ki4sBAIsXL8awYcPwxRdfIDc3F3/+859RUVGBsWPHAmjac2H34VUf8b/FRx69LH6UVCqt9zVCCEil1nlxm56ejhkzZqBjx45YuXJlzW9B9nYuFAoFduzYgdzcXHz66aeYPn065syZA8D2z4UQAu+88w4GDx6MiIiIOscB2z8Pj1q3bh1atmwJX19fAEBQUBDc3d2xYMECpKSkALCP86GZDdi7d28sW7YMABAcHAwhBNasWYPXXnsNQNOeC4ZXPeRyOQDU+g1A87FcLq/5raGu3xLKy8tr3sOaHD58GIsXL0bnzp2xefNmtG7dGrdv3wZgf+fC09MTnp6eCAoKgqurKxYtWlTzl87Wz8XOnTuRm5uLgwcPQqVSAfg1sFQqlV3+/ejbt2+tY0OGDNH62B7Oh+YKatCgQVrHBwwYgNWrV+P7778H0LTnguFVDy8vL8hkMuTn52sd13zs7e0NFxcXeHh44KefftJ6zZ07d6BUKmvdz7V0W7ZswZo1a9C3b1989tlnNT9A9nQu7t69ixMnTiA4OBgeHh41xxUKBQDg2rVrdnEuEhMTUVJSggEDBtQa8/f3x/vvv28X50Hjzp07OHbsGPr16wdPT8+a4w8ePAAAuLu728356Ny5MwCgsrJS67jmiqxjx45Nfi6s4xrVTJydnREYGIikpKSa3ziBh3+p5XI5AgICAAD9+/fH8ePHtf5HJiYmQiaT1fmbmqXas2cPVq9ejREjRmDz5s1av/nY07lQq9VYvHgxdu/erXVcc1uoe/fudnEuli9fjr1792r9GTp0KNq2bYu9e/di+PDhdnEeNCQSCZYuXYodO3ZoHT98+DBkMhlCQkLs5nw8++yz6NChAw4fPqx1/Pjx43BwcECvXr2a/lw0enK/Ddu3b1+tPq/U1FTh6+srZs+eLU6cOCHWrVsnfH19xaZNm2pec/nyZdG9e3cxadIkcezYMZGQkCACAgLEsmXLzPBdGOb27duiZ8+eYujQoeL8+fNaDZiZmZnizp07dnMuhBBi+fLlwt/fX8TFxYnU1FQRGxsrAgICxLvvviuEsJ+fi8ctWrRIq8/L3s7DihUrhJ+fn1i/fn3Nz4W/v79YuXKlEMK+zsehQ4eEr6+vmDdvnkhJSRFxcXHC399frFq1SgjR9OeC4fWIusJLCCGSkpLEyy+/LPz9/UVoaKiIj4+v9bnnz58XY8aMEQEBAWLgwIHi448/FpWVlaYq/Ynt379fdO3aVeefAwcOCCHs41wI8bBRedOmTSI8PFwEBASIsLAwERcXJ6qrq2teYy/n4lGPh5cQ9nUeND8XERERIiAgQLz44ot2/XNx9OhR8eqrr4qAgAAxePBg8fnnn5vsXHA/LyIisjp85kVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVERFaH4UVkA3bt2oWwsDCd44sXL4avry+uXbtWa6y4uBjDhw9Ht27dsH///qYsk8houLYhkRndu3cPgYGBUKvVDXr9uXPn0LJly1rHU1NTERIS0uivr1QqMXXqVOTl5WHp0qUYNWpUo9+DyBwYXkRmVF1djdWrV2sd+/LLL5GZmYlFixbB3d295riTk1OdwaVWq/Htt9/i/fffb9TXrqysxMyZM3Hx4kUsWLAA48ePN+h7IDIHhheRGT311FN45ZVXtI5t27YNzs7OmDhxIhwc9P8VzcrKwi+//IJ+/fo1+OtWV1djzpw5OHfuHGbNmoWpU6c2unYic+IzLyILUlVVhUuXLsHX17dBwQU8vGWoUCjQunXrBn+dJUuW4F//+heioqJqdoomsiYMLyILcvnyZVRWVsLPz6/Bn5Oamorg4OAGv37NmjX46quvEBYWhsWLFxtSJpHZMbyILEhWVhaAh5s9NkRFRQUyMjIaPFlj06ZNSEhIgEQiQWZmJoqLiw2ulcicGF5EFkQTXg298kpLS4MQAn369GnQ63fv3o3hw4djxYoVuHPnTqMneRBZCoYXkQXJysqCg4MDfH19G/T61NRU9O7dG82aNWvQ6wcOHIi1a9dizJgxCAkJQWJiIg4ePPgkJROZBcOLyEKo1Wrk5OTAx8cHzs7ODfqcM2fONKq/a9myZXBycgIAfPDBB2jRogVWrlyJmzdvGlQzkbkwvIgsxI8//ojy8vIGP+8qKSlBdnZ2oyZrSCSSmv/29PTE7NmzcffuXbz33nuNrpfInBheRBaisc+7zpw5A7lcjoCAAIO/5sSJE9GzZ0+cOHECe/fuNfh9iEyN4UVkIRo70/DMmTN44YUXIJUa/tdYKpXiww8/hKOjI1atWoWff/7Z4PciMiWGF5GFyM7OhkQiQbdu3Rr0+sb2d+ny3HPPYcaMGVAqlXj33XchhHji9yRqahLBn1QiIrIyvPIiIiKrw/AiIiKrw/AiIiKrw/AiIiKrw/AiIiKrw/AiIiKrw/AiIiKrw/AiIiKrw/AiIiKrw/AiIiKr8/8Bbv/bJD3ONcsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.lineplot(\n", " y=st_diagram.surface_tension / (MILLI * NEWTON / METER),\n", " x=st_diagram.liquid.temperature / KELVIN\n", ")\n", "sns.scatterplot(\n", " y=st_diagram.surface_tension / (MILLI * NEWTON / METER),\n", " x=st_diagram.liquid.temperature / KELVIN,\n", " clip_on=False\n", ")\n", "sns.despine(offset=10)\n", "plt.xlim(100, 600)\n", "plt.ylim(0, 50)\n", "plt.xlabel(r'$T$ / K')\n", "plt.ylabel(r'$\\gamma$ / mN m$^{-1}$');" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }